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1 The Extensive Form

Any situation that we wish to represent formally would haseng basic elements that will be part of its
description. Most often, we begin with a verbal descriptftirat may be quite vague at times), and then
distill each element from it. Let’s start with a simple camhte borrowed from Roger Myerson that we
saw already. To refresh our memory, here’s the game again.

EXAMPLE 1. (MYERSON'S CARD GAME.) There are two players, labeled “player 1” and “playet 24t the beginning of

this game, each player puts a dollar in a pot. Next, playeadvslia card from a shuffled deck of cards in which half the camels a
red and half are black. Player 1 looks at his card privatety decides whether to raise or fold. If player 1 folds, then s

his card to player 2 and the game ends; player 1 takes the niotiey pot if the card is red, but player 2 takes the money if the
card is black. If player 1 raises, then he adds another dall#ine pot and player 2 must decide whether meet or pass. If she
passes, the game ends and player 1 takes all the money intthégbe meets, she puts another dollar in the pot, and therepl

1 shows his card to player 2 and the game ends; if the card,iplager 1 takes all the money in the pot, but if it is black ygla

2 takes all the money.

The essential elements of a game are:
. players. The individuals who make decisions.

. rules of the game Who moves when? What can they do?

1
2
3. outcomes What do the various combinations of actions produce?
4. payoffs. What are the players’ preferences over the outcomes?

5

. information : What do players know when they make decisions?
6. chance:Probability distribution over chance events, if any.

A player is a decision-maker who is participant in the game and whoséig to choose the actions
that produce his most preferred outcomes or lotteries avieomes. We assume thaayers are rational
their preference orderings are complete and transitivemdfel uncertainty over outcomes with lotteries,
like we've done before. This means that preferences can sxrided with utility functions and rational
players choose actions that maximize their expectediesil{that's why we need the vNM theorem).

Letd = {1,2,...} denote the set of players indexedibyThat is,i € 4 is a generic member of this set.
In our exampled = {1, 2}, the two players labeled “player 1” and “player 2.

We representhanceevents by aandom move of natureNature, denoted byV, is a pseudo-player
whose actions are purely mechanical and probabilistid;ishahey determine the probability distribution
over the chance events. In our example, Nature “choosestdtoe of the card that player 1 randomly
draws from deck. Because the number of red cards equals thbemwf black cards and the deck is
shuffled, the probability of the randomly chosen card beawjis0.5. Fig. 1 (p. 3) shows how the random
draw by player 1 can be represented as a move by Nature.

Nature “moves” first, and so thaitial node (or the “root node”) of the game, denoted with an empty
circle, is the place where the chance event occurs. The tagilpe “actions” by Nature amed andblack
which we represent with orlgranch each.

Each branch then leads tadacision node(denoted with a filled circle), where player 1 gets to make
his choice between raising and folding. When player 1 getadwe, he knows the color of the card he
has drawn. In our example, player 1 chooses whether to raig#dounder two distinct circumstances,

1we establish the following convention: odd-numbered piayee male, and even-numbered players are female. For Egene
player, we shall always use the generic male pronoun.



Figure 1: Move by Nature Determines Card Color.

depending on the color of the card. That is, he has one dadsimake conditional on the card being
black, and another conditional on the card being red. In ba#ies, the choices are between raising and
folding.

We need a way to represent the fact that when player 1 gets ¥e,rme knows the color of the card
he is holding. Aninformation set for some played summarizes what the player knows when get gets to
move. Player 1 has two information sets, labeled “b” and At’'information set “b”, player 1 knows that
the card is black, and at information set “c”, he knows thatdard is red. Each of these information sets
contains exactly one decision node.

[0.5]

Figure 2: Move by Nature Followed by Choice by Player 1.

For each of his information sets, a player must choose whab taAn action (or move) for player is
a choice, denoted hy; that playeri can make at that information set. Léf = {a;} denote the set of
choices at an information set. That is, this is the set obastirom which the player must choose. The
set of actions may be different depending on the informagietn Lets denote an arbitrary information set
(we shall shortly see why this letter is appropriate). THgth) is the set of actions available to player
at information set. If the player does not get to move at information /sgthenA4; (h) = 0.

In our example, player 1 always has the same two actionsdiegarof the color of the card: He can
either raise, denoted bR, or fold, denoted byF. Thus, A;(b) = {F,R} and A;(c) = {f,r}. We
represent the actions available at a decision node withchemnemanating from that node, as shown in
Fig. 2 (p. 3). | have used upper and lower case letters to dehetactions at the different information sets
to emphasize that they are, in fact, different in the senseatthough the action is the same it occurs in a
different context. That is, even thoughand f both represent the action “fold,” the first is really “fold on
black card” and the second is “fold on red card.”

Information sets that contain only one decision node aleaaingletons Here, both information sets
for player 1 are singletons. Note that we have labeled thanfeomation sets by player 1 with “1.b” and
“1.c” respectively. This is intended to convey both thatyplal gets to move and that he knows different
things at the different information sets.

A history of the game is a sequence of actions taken by the variousrplay¢heir information sets.
The initial history (before the game begins) is denotediby= @. One history of the game iblack),
that is, nature having chosen black. Another historgplack, F), that is, nature having chosen black, and
player 1 having folded.



More generally, we can think of the game as a sequence ofsstadere all players simultaneously
choose actions from their choice setg(#) (remember that these choices may be “do nothing” if the
player’s action set is empty &). An action profile is the set of actions taken by the players at that stage.
For example/? is the “history” at the beginning of the game, arfti= (a{.....a?) is the action profile
following 4°. Thenh! is the history identified witla®, and A4; (k1) is the set of actions available to player
i there. Continuing iteratively in this manner, we define trstdny at the end stagle to be the sequence
of actions in the previous stages:

petl = (ao,al,...,ak).

We shall letk + 1 denote the total number of stages in the game, noting thabfoe games, we may have
K = +oo0. Inthese cases, the “outcome” of the game is the infinitehidt™. Let H = {#*} denote the
set of all possible histories. Since edch*! by definition describes an entire sequence of actions from
the beginning of the game to its end, we shall calltiéianinal history . The setz = {hX+1} c H of all
terminal histories is the same as the set of outcomes whegathe is played.

Returning to our example, the histofred, /) is terminal because the game ends if player 1 folds. Con-
versely, the historie&ed) and(red r) are not terminal because the game continues. Note thatatan
sets are related to histories because they summarize pgsamdl what players know about it.

For each playef, we specify gpayoff function, u; : Z — R. That is, a function that maps the set
of terminal histories (ooutcomey, to real numbers. In other words, we assign numeric payofthe
outcomes. Of course, this function must represent the rgned¢e ordering of the player over the outcomes.
Sinceh; = (black F) andh, = (red f) are both terminal histories, the player's (Bernoulli) pyo
functions must assign numbers to these outcofriest’s assume that utilities are linear in the amount of
money received, ai(z) = z. Then:

uy(hy) = uz(h) = —1
ur(hz) = uz(hy) = 1.

We list these payoffs below the terminal node associatdutivéim. By convention, the order is determined
by the order in which players appear in the game tree, top ttoinoand left to right. In our example in
Fig. 2 (p. 3), the first number is player 1’'s payoff and the selcoumber is player 2's payoff.

If player 1 raises, player 2 gets to make a move. ThusRlandr branches representing raising by
player 1 lead to decision nodes for player 2. She can eithet,meor passp, and so each decision node
will have two branches, labeled and p respectively, as shown in Fig. 3 (p. 5). The payoffs from the
resulting terminal histories are specified in the same maambéefore.

The crucial difference between the information availablg@layer 1 and the information available to
player 2 is that player 2, unlike player 1, does not know thiercof player 1's card although she does
observe his action (raising). In other words, when playee® go move, she does not know whether
player 1's card is red or black. The information set, dendigd0” for player 2 thus includedoth
historieshz = (black R) andi4 = (red, r). Because each of these histories leads to a different dacisi
node for player 2, we enclose them in a box (or connect therariresother way) to demonstrate that they
belong to the same information set. We say that Bgtland /4 are consistentwith the information set
“0”. The information set represents the fact that when pi&ygets to move, she does not know the color
of the card; she only knows what she can see—namely, thagiplalyas chosen to raise.

2Bernoulli defined the utility function over wealth, and bynwention we use the terBernoulli functionto refer to payoff
functions defined over the outcomes. Von Neumann and Morgensoved away from this and defined tixpected utility
functionover lotteries. People sometimes call theea Neumann-Morgenstern Utility Function simply,vNM Utility Function
Recall that these are subjective in the sense that prefesenast be given before these utilities can be derived.

3As we shall see when we analyze the game, in equilibrium payeay learn about the likelihood of the card’s color by using
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Figure 3: Myerson’s Card Game in Extensive Form.

Player 2’'s information set is not a singleton because itaioattwo of her decision-nodes. Lifx)
denote the fact that the information getontains nodec. The information set captures the idea that the
player who is choosing an action &atis uncertain whether he is ator at some othex’ € h(x). We
require that ifx” € h(x), then the same player movesxaandx’. Otherwise, players may disagree who
was supposed to move.

Information sets partition the decision-nodes such theth @ade belongs to exactly one information set
and no more. Itis in this way that information sets are relétehistories. As you can see in the example,
it is perfectly fine to have information sets with more ther alecision node. However, it is impossible
for the same decision node to appear in more than one infamset.

Recall that the action sets are defined in terms of informatits. That isd; (k) is the set of actions
from which playeri may choose at information skt It is essential to realize that this implies that for
all nodes in this information set, the actions availableamtheare the same. That is,xf € i(x), then
A;(x") = A;(x). Thus, we can le#d; (1) denote the action set at information et

To see why this must be the case, suppose that player 2 hdteamgtion, say “punt”, at the node
reached by the historly; = (black R) that was not available after histoky = (red r). This means that
she could punt if and only if player 1 had a black card. But havuld player 2 exercise this option if she
does not know the color of the card? To represent this sitnatie would have to give player 2 an action
called “try to punt” and add it to both nodes in her informatiet. Then, if she chooses this option, she
would succeed when the card is black but fail when it is red.

Note, on the other hand, the we could easily give player Euifit actions (or numbers of actions) at
each of his nodes 1.b and 1.c because they belong to diffiafentation sets. It is to emphasize this that
| label the actions differently in Fig. 3 (p. 5), with lowesmand uppercase letters, depending on the color.

The point is that if a player has two nodes with different sétactions, then these nodes cannot belong
to the same information set. However, one can easily haferelift nodes with the same sets of actions
even though the nodes are not in the same information set.

This completes the extensive form representation of thé game. Note that we have specified the
players, the rules of the game (who moves when and what aptiey have), the outcomes in terms of

the information obtained from observing raising and knalgke of player 1's optimal strategy. In some games, the uaiogyt
will be fully resolved—even though player 2 cannot observ@aiis known to the opponent, she dafer that information from
his observable behavior and knowledge that he, beingigeell and rational, is choosing his optimal strategy. Ofrseuplayer
1 knows all of that full well, so he may well try to obfuscate idferences, just as he will do in this particular game. Hisroal
strategy is to prevent this inference. Even then player Rheilable to learn something from the fact that he’s choseniter
Observe, incidentally, that unless you assume that playessie the best strategies to the best of their abilitias cpmnot make
such inferences, and behavior becomes unintelligible. @graiher things, this would imply that we simply cannot parfany
sort of meaningful analysis as social scientists.



terminal histories, the payoffs associated with theseamés, the information available to the players
when they move, and the probability distribution of the ateaavents.

1.1 Formal Definition of the Extensive Form

In most applications, the game trees would rarely be drawd,s® one must make do with the mathe-
matical description of the extensive form. It is necessargd through this exercise to understand the
methodology of this fundamental class of games. We shallyiaif ever, need to resort to the finer de-
tail, but the mathematical description allows us to define iwportant categories of games (perfect and
imperfect recall), of which we shall only study one. Thedaling definition follows Fudenberg & Tirole
(1991).

DEFINITION 1. The extensive form of a gamg, = {4, (X, >),(-), A(-), H,u}, contains the following
elements:

1. A set of players denoted bye 4, with d = {N,1,2,...}, with N representing the pseudo-player
Nature;

2. Atree,(X, =), which is a finite collection of nodes € X endowed with the precedence relatien
wherex > x’ means % is beforex’.” This relation is transitive and asymmetric, and thus titutes
apartial order.* This rules out cycles where the game may go from node a nodex’, from x’
back tox.® In addition, we require that each nogiénas exactly one immediate predecessor, that is,
one nodex’ > x such that” > x andx” # x’ impliesx’ = x” orx” > x’. Thus, ifx’ andx” are
both predecessors of then eitherx’ is beforex” or x” is beforex’.

3. A set of terminal nodes, denoted by Z consisting of all nodes that are not predecessors of any
other node. Because eagldetermines the path through the tree, it represents anmetod the
game. The payoffs for outcomes are assigned by the Berrpayltff functionsu; : Z — R, and
u = (u1(-),...,ur(-)) is the collection of these functions, one for each player.

4. Amap: : X — 4, with the interpretation that playetx) moves at node:. A function A(x) that
denotes the set of feasible actionscat

5. Information set& € H that partition the nodes of the tree such that every nodeaistlyxin one set.
The interpretation ok(x) is that information sek contains the node. We require that i’ € i(x),
thenA(x’) = A(x), and so we can let (k) denote the set of feasible actions at informatioriset

6. A probability distribution over the set of alternatives &ll chance nodes.

This definition now allows us to make several ideas very peeci

1.2 Perfect Recall

We shall require that players hagerfect recall That is, a player never forgets information he once knew,
and each player knows the actions he has chosen previodsdywé shall see, the fact that players may
know all previous history does not force us to assume thatili@ake it all into account when making
decisions.) This is accomplished by requiring that:

4It is not a complete order because two nodes may not be cobiparigor example, consider player 2’s information set in
Fig. 3 (p. 5): Neither of the nodes precedes the other.
5To see this, suppose we constructed a game such that’ > x. By transitivity, x > x, but this violates asymmetry.



A) if two decision nodes are in the same information set, thgither is a predecessor of the other; and

B) if two nodesx’ andx” are in the same information set and one of them has a predecegben the
other one has a predecessofpossiblyx itself) in the same information set asand the action taken
at x that leads toc’ is the same as the action taken frénthat leads to the”.

The games in Fig. 4 (p. 7) illustrate some cases of imperéalrthat this requirement eliminates.

(@) The player has forgotten (b) The player has forgotten
which action he took whether he moved
1 1
X X
1L
x/ x//

(c) The player has forgotten where he
was in the game

Figure 4. Games of Imperfect Recall.

The situation in Fig. 4(a) (p. 7) is ruled out by condition @dion B because even though bothand
x” in player 1's second information set have the same predegessthe actions leading from to the
information set are different. The situation in Fig. 4(b) Tpis ruled out by Condition A becauseandx’
are in the same information set buts a predecessor af. Finally, the situation in Fig. 4(c) (p. 7) is ruled
out by Condition B: because andx” are in the same information set and even thaugha predecessor
of x” andx is a predecessor af’, x andx are not in the same information set themselves.

The literature on games with imperfect recall is very smalthough there are some very interesting
papers that might be worth looking at (e.g. the famous gamereva drunk driver forgets whether he's
been past an exit on the freeway). These games are still guitiic and their application has been of
limited usefulness. This is not to say that there are no iexciireas where these can be applied. One
interesting area of research is machine game models oftezgpsuations: these machines have limited
memory and since information is costly to acquire, a playay fiiorget” some of his past actions. This
approach has been extensively used in low-rationality soafelearning (evolutionary game theory, for
example), where players look at a most recent past whenrigrepectations about future behavior. This
course will only deal with games of perfect recall.

1.3 Finite and Infinite Games

There are three different conceptions of finiteness buridtié definition of extensive form games. The
mathematical description can be easily extended to coeseths well.

DeFINITION 2. A finite game has (i) a finite number of players, (ii) a finite numberaifoams, and (iii)
finite length histories. Otherwise, the gaméniBnite .

7



Note that relaxing any of the three requirements resultsimfnite number of nodes. Thus, a game is
finite if it has a finite number of nodes. Some examples of ugefinite games that we shall encounter
include games where players choose actions from some ahtigrat is a subset of the real line; games
which can be repeated indefinitely; or games involving amitginumber of players (we shall see how
these games are a way to model incomplete information).

1.4 Informational Categories

We now make very precise several different information&garies. Make sure you understand the terms
because we shall use them quite a bit.

DEeFINITION 3. We distinguish the following informational categories:

e A game is one operfect information if each information set is a singleton; otherwise it is a game
of imperfect information .

e A game is one otertainty if it has no moves by Nature; otherwise it is a gameintertainty.

e A game is one otomplete information if all payoff functions are common knowledge; otherwise
it is a game ofncomplete information.

e A game is one obymmetric information if no player has information that is different from other
players when he moves or at the terminal nodes; otherwisaijame ohsymmetric information.

Myerson’s Card Game shown in Fig. 3 (p. 5) is a game of comgiatamperfect (and asymmetric)
information that is also one of uncertainty. Games of imgerfecall are always games of imperfect
information.

We shall see games of incomplete (asymmetric) informatter lin the course. We shall also see how
they can be modeled (and solved) as games of imperfect iataym It is worth noting that although many
games of incomplete information are also games of asymenietiormation, the two concepts are not
equivalent. For example, the famous principal-agent jprobhas complete but asymmetric information:
both players know all payoff functions but the principal do®t observe the agent’s effort, even after the
end of the game.

It is also possible to have games of incomplete but symmigtiacmation. For example, a Prisoners’
Dilemma where Nature moves first and randomly assigns diftgpayoffs to the outcomes, unknown to
either player.

2 Strategies in EFG

2.1 Pure Strategies

Playeri’s strategy, s;, is a complete rule of action that tells him which actigne A; to choose at each of
his information sets. That is, a strategy specifies what ldygep is going to do every time it is his turn to
move given what he knows. A playerstrategy space(sometimes also calledsdrategy set S; = {si},

is the set of all possible strategies.

A strategy is a&complete contingent plan of action That is, a strategy in an extensive form game is a
plan that specifies the action chosen by the playeef@ryhistory after which it is his turn to move, that
is, ateachof his information sets. This is a bit counter-intuitive base it means that the strategy must
specify moves at information sets that might never be rehblkeause of actions specified by the player’s
strategy at earlier information sets.



DEFINITION 4. LetT" be a game in extensive form. pure strategy for playeri € d is a function
s;i « € — A such that; (h) € A;(h) forallh € J.

Let’s list the strategies for the two players in Myerson'ssc€c&ame in Fig. 3 (p. 5). Player 1 has
two information sets, labeled “b” and “c”, witld,(b) = {R, F} and A1(c) = {r, f}, SO his strategy
must specify two actionsy, € A1(b) anda, € Ai(c). We shall write his strategy as an ordered set:
s1 = (ap,ac), with the first element denoting the action to take at infdfamaset “b” and the second
denoting the action to take at information set “c”. This giYeur pure strategies for player 1.

Sl ={(R,r),(R,f),(F,r),(F,f)}.

For example(R, f) is the strategy “raise if the card is black, and fold if thecciarred.”

Player 2 knows that she won't see the color and will only gethioose if player 1 raises, in which case
she will either have to meet or pass. There is only one infGonaset for player 2, so her pure strategy
must simply specify the actiony € A,>(0) = {m, p}, she is to take at this information set. Thus,

S, = {m, p}.
The strategyn is then “meet if player 1 raises.”

1 B 2 d 1 F

3,2

1,1 -1,1 4,0
Figure 5: EFG With Two Info Sets for Player 1.

Consider now the game in Fig. 5 (p. 9). It has two players {1, 2}. The game also has seven histories:
H = {(©),(A), (B),(B,c),(B,d),(B,d,E),(B,d, F)}. Recall that¥#; denotes the set of information
sets for playeri, and 4;(h) denotes the set of available actions at informationisér all h € #;.

At the information se®, player 1 has two actions availablet; (d) = {4, B}. At the information set
(B,d), he has two actions availabl¢, (B,d) = {F, E}. Player 2 only gets to move at the information
set B, and has two actions available theréy(B) = {c,d}. There are four terminal historiesZ =
{(4).(B.c).(B.d.E).(B.d. F)}.

Since a strategy is a complete contingent plan of actionugtrapecify the actions to be taken at every
information set. Player 1 has two information sets in the giaand therefore his strategy will have 2
components: an action to take at the first information set,aanaction to take at the second information
set. Since in both cases he has two actions available, hetbt af four different strategies:

S1 ={(AE),(AF),(BE),(BF)}.
Player 2 has only one information set, with two actions thanel so she has only two possible strategies:
S> ={c,d}.

This game illustrates a point that is worth emphasizing.s lextremely important to remember theat
strategy specifies the action chosen by a playerfery information set at which it is his turn to move,
even for information setsthat are never reached if the strategy isfollowed. That is, in the game in Fig. 5

9



(p. 9), the first two strategie$A E) and (A F') specify actions after the histoiyB, d) even though they
specify actionA at the initial node (which means that when the strategy isvi@d, history(B, d) will
never be realized, and the second information set will nbeereached). In this sense, a strategy differs
from what we naturally consider a plan of action. In this amste, every-day language is misleading. We
may say that we “plan to choog#’ and since the game will end, there is no reason to plan whab ti®
we playedA instead. However, here we want to know whetBeis better thard for player 1. To decide
whether this is the case, we need to know what the conseqguehcoosingd are (otherwise we cannot
compare the two actions). But to evaluate the consequericéswe need to take into account what he
would optimally do at his last information set and incorgerthis into player 2's expectations to infer what
she will do at her information set. Choosiiycan only be optimain the context of expectations about
what would happen if the player chose actidrinstead. It is because we want to find optimal strategies
that we must engage in these comparisons and it is for thedmethat we must specify the full strategy in
what appears to be a redundant fashion. This will becomeeti@den we analyze some games later on.
A strategy profile, s = (s1,52,...,5,), iS an ordered set of strategies consisting of one strai@gy f
each of thex players in the game. One extraordinarily useful piece oatart can let us focus on player
i’'s strategys; in the profiles. We can partition the strategy profiteas:

(si,5-i) =,
wheres; is playeri’s strategy, and_; is the set of strategies for all other players. For example,=
(s1, 52,53, 54, 55), and we specify(s;, s—;) for playeri = 3, thens; = s3, ands—; = (s1, 52, 54, 55). Let

S =951 x5, x...x S, denote the set of strategy profiles.

Because a strategy profile specifies what each player is goidg at every point in the game where it
is his turn to move, it in effect describéswthe game will be played and what its outcome will be if the
players follow the strategies in the profile. In other worsch strategy profile will yield:

e one outcome if that there are no moves by chance; or

¢ aprobability distribution over outcomes if there are mdwgshance and the strategies are consistent
with information sets where Nature moves.

Some people define players’ preference orderings oveegtradrofiles, but | find this confusing even
though it is equivalent to defining them over outcomes. loisfasing because one may think that players
actually care about the strategies being played apart fnrenogitcomes they produce. (If this is the case,
then this fact must be reflected in the payoffs associateld tvié outcomes.) We shall define them over
outcomes. A player’s payoffi; (s), is the expected utility that playéreceives from the outcome produced
by the strategy profile € S. Thus, each player's goal in a game is to choosg € S; that maximizes

u;i (8i,5-;).

2.2 Mixed Strategies in EFG

The definition of mixed strategies in EFG is exactly the sasha definition in strategic form games. To
summarize,

DEFINITION 5. A mixed strategyfor playeri, denoted by;, is a probability distribution ovei’s set of
pure strategies§;. Denote the mixed strategy space for playey X;, whereg; (s;) is the probability that
o; assigns to the pure strategye S;. The space of mixed strategy profiles is denotedby AY;.

10



2.3 Behavior Strategies in EFG

Unlike strategic form games, extensive form games admidistinct types of randomization: a player can
either randomize over his pure strategies or he can ran@oavigr the actions at each of his information
sets. The second type of randomizing strategy ishtbieavior strategy, which specifies a probability
distribution over actions at each information sehese distributions are independeiitat is, a behavior
strategy specifies the probabilities with which actionsdresen at every information set. Thus, a pure
strategy is a special kind of behavior strategy where theilligion at each information set is degenerate.

To help illustrate the difference between the two types nflamnization, Luce and Raiffa (1957) offer
the following analogy: A pure strategy is a book of instrans, where each page tells how to play at a
particular information set. The space of pure strategieslisrary of these books. A mixed strategy is
a probability distribution over this library (i.e. it spéeis the probability with which books are chosen).
A behavior strategy is a single book where each page prescdalrandom action. Thus, a player may
randomly select a pure strategy or he might plan a set of rarm#tions, one for every point at which he
has to take action.

An example may be helpful. Consider the game in Fig. 5 (p. €)raxall that player 1 has four pure
strategies:(AE), (AF), (BE), and(BF). A mixed strategy is a probability distribution over theseirf
strategies. For example, a mixed strategy: (1/4, /4, 1/4, 1/4) specifies that player 1 will play each of his
pure strategies with equal probability k. Another mixed strategy might le= (1/3,0, /s, 1/2), which
specifies that player 1 should playE with probability 1/3, A F with probability 0, BE with probability
l/6, and BF with probability 1. You can see the close correspondence with mixed strategresmal
form games.

On the other hand, a behavior strategy for player 1 wouldippoobabilities for actions at all in-
formation sets. Because player 1 has two information shiésstrategy must specify two probability
distributions, one for each information set. For exampgles (1/4, 1/4) means that player 1 will choose
A at his first information set with probability/s (and choose8 with complementary probability/s), and
he will chooseE with probability 1/4 at the second information set. Another behavior strategyhtride
B = (0, 1/2), which specifies that player 1 should chodsevith probability 1 at the first information set
and playE and F with equal probability at the second information set. Jikstd pure strategy will have as
many elements as there are information sets at which theiphayst move, the behavior strategy will also
have as many elements as there are information sets. Theediffe is that the pure strategy will prescribe
a certain action for each information set whereas the behatrategy prescribes a probability distribution
over the actions at this set. (Of course, the number of elesriera mixed strategy equals the number of
pure strategies.) As we noted, a pure strategy is a behavategy with degenerate distributions at each
information set. So, for example, the pure straté&gy is the behavior strateg§y = (0, 1) just as it is the
degenerate mixed strategy= (0,0, 1, 0).

2.4 Equivalence of Mixed and Behavior Strategies

As you probably already suspect, the two types of randomigirategies are closely related. We shall call
two strategiegquivalentif they induce the same probability distributions over omes for all strategies
of the opponent8.Intuitively, two strategies are equivalent if they have shaene consequences regardless
of what the other players do.

6This is the same concept of equivalence we used when we distiise reduced normal form representation of extensive
games in the previous section.
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2.4.1 Mixed Strategy Equivalent to a Behavior Strategy

Let's see how we can generate a mixed strategy that is egqoived some arbitrary behavior strategy
for playeri. Let §;(h;)(a;) denote the probability with which actiay € A;(h;) is taken (that is the
probability with which an action is chosen from the set ofi@att available after history;). Lets; (h;)
denote the action specified by the pure stratggt the information set; (and sas; specifies one action
for all information sets where playémets to move). Define the mixed strategyto assign the following
probability to each pure strategy.

oi(si) = [ Bilh) (si(h)). €N

h,’GH

That is, the probability with which the pure strategy is @dmss simply the product of probabilities as-
signed by the behavior strategy to the action the pure giygieescribes at each information set. Note that
we made use of the assumption that the behavior randomisadi@ independent across information $ets.

Let's ask ourselves about the intuition behind this. Esaliyta pure strategy;, gives a “path” of play
through the game: given what other players are doing, thégesty tellsi what to choose at each of his
information sets until the game tree reaches a terminal.nddis means that; would have to assign to
that “path” a probability that equals the probabilitiestwithich each of its separate components is taken
by i’s choice. Sinces; gives the probability of the action prescribed $yfor each information set, the
probability of the entire “path” is just the product of theopabilities that picks the relevant actions that
constitute that path.

Consider the (Little Horsey) game in Fig. 5 (p. 9). A behawtategy for player 1 has two elements,
a probability distribution over his two actiorfg!, B} at his first information set, and another probability
distribution over the action§E, F'} at his second information set. Consider some fixed (possilped)
strategy for player 2¢, such thats,(d) > 0, and consider the outcome after hist§®, d, F). Denote
this outcome by 4. The only pure strategy for player 1 that can produce thik wdsitive probability is
s1 = (B, F). Thatis Pfz4|s1] = 02(d). Observe now that a (non-degenerate) behavior stratedjputil
positive probabilities on bot® and F but will not choose them with certainty. Hence, the probghbof
z4 Willbe Pz4|81] = B1(9)(B) x02(d) x 1(Bd)(F). That s, it multiplies the probabilities it assigns to
the actions specified by at each information set: P |81] = B1(0)(s1(9)) x02(d) x B1(Bd)(s1(Bd)),
where we note thai; = (B, F) is, if we were to use to full definition of a pure strategy as lacfion
that takes an information set and returns an action, eaquivabs;(4) = B ands;(Bd) = F. Now,

a mixed strategy for player 1 can also produgewith positive probability as long as;(BF) > 0. In
particular, since we want; to producez4 with the same probability g8;, it must be the case that in that
mixed strategy the probability of player 1 choosingth B and F at the respective information sets must
be the same under; as it is underg;. Underg;, we have seen that the probability of choosiBgnd
Fis B1(9)(B) x B1(Bd)(F), which would givez4 with probability o, (d). Since the only way to reach
this outcome must involve playing, the mixed strategy must assign this exact probability & pure
strategy:oi(s1) = B(@)(s1(9)) x B1(Bd)(s1(B,d)), thatis, exactly as in (1). The probability of reaching
Z4 USINgoy Is alsoo,(d).

Let's now consider a specific example. To check equivalewesfirst need to specify the distribution
over outcomes. The Little Horsey game in Fig. 5 (p. 9) has fmuicomes. Let the probability dis-
tribution (z1, z2, 23, 24) denote the associated probabilities for the outcofies), (—1, 1), (3,2), and
(4,0). Finally, leto,(c) denote the probability with which player 2 choogseandaos(d) = 1 — g2(c¢)
denote the probability with which she choosés The behavior strateg$ = ((1/4, 3/a), (14, 3/a)),

"This holds for all games of perfect recall. In games of impetrfecall, it is possible to have behavior strategies thanot
be duplicated by any mixed strategy.
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where player 1 choose$ and E with probability 1/4, induces the probability distribution over outcomes
(Y4, 3/a02(c), 3/1602(d), °/1602(d)). (We obtained the probabilities fag andz4 by multiplying the the
probability of each action specified by the behavior sthategthe probability that the initial action iB8.
You should verify that the distribution over outcomes isdzal.e. all probabilities sum to 1.) Now, using
our Equation 1, we can define the mixed strategs follows:

0(AE) = B(0)(A) x B(BA)(E) = Yax s = /e
0(AF) = B(©0)(A) x B(Bd)(F) = '/a x 3/a = 3/16
0(BE) = B(0)(B) x B(Bd)(E) = 3/a x /s = 3/16
0 (BF) = B(@)(B) x B(Bd)(F) = 3/a x 3/s = %/

(We again verify that this is a valid probability distribomi by noting that the probabilities all sum to
1.) Is this mixed strategy equivalent to the original bebegtrategy? That is, does it induce the same
probability over outcomes regardless of what the othergrldpes? The probability of outcome equals
the probability that player 1 chooses which he does in two of his strategies, and so it (3l E) +
o(AF) = 1/4. The probability ofz, is the probability that player 1 will choosk, which iso(BE) +

o (BF) = 3/4, multiplied by the probability that player 2 choosesThis yields3/s05(c). The probability
of z3 is the probability that player 1 chooses bathand £ multiplied by the probability that player 2
chooses?, which yieldso (BE)o,(d) = 3/1602(d). Finally, the probability ofz4 is the probability that
player 1 chooses botB and F', o (BF'), multiplied by the probability that player 2 chooséswhich yields
9/1602(d). To summarize, the probability distribution over outconretuced by the mixed strategy as
defined above i$1/4, 3/40,(c), 3/1602(d), °/1602(d)), which is the same as the probability distribution
induced by the behavior strate@y We have now seen how to generate an equivalent mixed striateg

an arbitrary behavior strategy. But there is more to egeiva than this!

2.4.2 Equivalence Theorem
An important result is that in a game of perfect recall, miaad behavior strategies are equivalent.
THEOREM 1 (KUHN 1953). In a game of perfect recall,

e every behavior strategy is equivalent to every mixed siyatleat generates it;

e every mixed strategy is equivalent to the unique behaviategly it generates. 0

That is, different mixed strategies can generate the samavlmr strategy even though each mixed
strategy either generates exactly one behavior strateglg@infinitely many behavior strategies. To make
this a bit more concrete, two different mixed strategies gamerate the same behavior strategy (we shall
see an example below). The first part of the claim is that thrsbior strategy is going to be equivalent
to each of the two different mixed strategies that genetat€he two mixed strategies alehaviorally
equivalent

Further, every mixed strategy has at least one behaviguedsentation, and it may have many. It may
have many if there are information sets that the mixed giyad®es not reach with positive probability: In
this case it does not matter what probability distributioa behavior strategy specifies for that information
set. If, however, the mixed strategy reaches all infornmaets with positive probability, then it will
generate a unique behavior strategy. The second part ofzine states the these will be equivalent.

Finally, note that we can generate a mixed strategfrom a behavior strategg; as shown above in
(). In this caseg; is the mixed representation ¢f, and they are equivalent. Further, it is not hard to
show that ifo; is the mixed representation gf, theng; is the behavioral representationmt
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To see how the theorem works, let’s derive a behavior stydtegsome given mixed strategy. Let be
a mixed strategy for player. For any historyi;, let R; (h;) denote the set of playeis pure strategies that
are consistent with;. That is, for alls; € R;(h;), there is a profile_; for the other players that reaches
h;. We shall call the strategies iR; (7;) consistentith the historyh;. For example, in the Little Horsey
game from Fig. 5 (p. 9), all four pure strategies for playerd @nsistent with his first information set,
@ for the simple reason that the initial information set is @& reached regardless of what players are
going to do from that point on. On the other hand, the inforameset(Bd) can only be reached for some
strategy by player 2 (in this case) provided player 1 chooseB at his first information set. There are
only two pure strategies that involve such a choiCBE) and (BF). Therefore,R1(Bd) = {BE, BF},
and neitherd E nor AF is consistent with the historBd .

Now let ; (h;) be the sum of probabilities accordingdp of all the pure strategies that are consistent
with h;:

mi(hi) =Y 0i(si).
s;€R; (h;)

Intuitively, this is the probability with which the game Wwikachh; providedi (and the other players)
choose actions consistent with this history. It answergythestion: “Suppose all other players use pure
strategies that are on the path towaydWhat is the probability of reachin if playeri usess;?” In our
exampleyr1 (@) = 01(AE) +01(AF) + 01(BE) + 01(BF) = 1,andn1(Bd) = 01(BE) + 01(BF). In
either case, we are supposing that player 2 is choasiimghe sense that she is not playing a strategy that
would make reachin@d impossible no matter what player 1 does.

Let w(h;,a;) denote the sum of probabilities accordingstoof all pure strategies that are consistent
with #; followed by actioru; € A;(h;). So we have

mi(hi,a;) = > 0i (s1)-

s;i€R; (hi)Asi(hi)=a;

Intuitively, this is very similar tar; (h;) except that it asks “What is the probability of reachizgand
choosingz; at that information set?” (Again, provided the other playese strategies that do not preclude
reaching that point in the game.) In our exampite(?, A) = 01(AE) 4+ 01(AF) because each o E
and AF is both consistent with the initial histo® and prescribesl as the action at that set. Similarly,
m1(9, B) = 01(BE) + 01(BF). At the second information set, we hawe(Bd, E) = 01(BE) because
even though botlBE and BF are consistent with this history, onBE involves choosingz at the second
information set. Analogouslyy; (Bd, F) = o1(BF).

We now have the two components we need. Observeriitag, a; ) is the probability of reaching; and
playing a;. However, to defingd(h;)(a;), we need to find the probability of playing provided’; has
been reached. This requires us to conditigL:;, a;) on the probability of reaching;, which is; (h;).

If o; assigns positive probability to somge R; (h;), define the probability that the behavior stratghyy
assigns tai; € A;(h;) as the probability of taking actiom; conditional on reaching the information set
hiZ
i (hi,a;)

Bi(hi)(a;) i (h7) .
Intuitively, the probability of pickinga; at the information sek; is the probability of reaching; and
picking a; conditioned on the probability of reachirg. In our examplef;(¥)(A4) = 01(AE) +01(AF)
andp; (@, B) = 01(BE) + 01(BF). At the second information set,

01(BE)

PLBd. E) = e o (BF)
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that is, the probability the behavior strategy must assigiié actionk is the probabilityo; assigns to it
conditional on reaching this information setif is followed. Finally,

01(BF)
01(BE) + 01(BF)

B1(Bd.F) =

How we defineg; (h;)(a;) if ;(h;) = 0 is immateria® One possible specification is to assign the
probabilities given by the mixed strateg; (h;)(a;) = ZSi (h;)=a; 0i(si), but anything will do. In either
case, thed; (-)(-) are nonnegative, and

> Bithiai) =1,

a;€A;(h;)

because eacl} specifies an action for playeérat the information sek;. In other words,8; specifies a
valid distribution for each information sét. If z; (h;) > 0 for all histories, then the mixed strategy will
generate a unique behavior strategy.

Let’s look at concrete example. Consider the game in Fig..a%). We want to find the behavior
strategy for player 1 that is equivalent to his mixed straiagvhich he playq B, R) with probability 0.4,
(B, L) with probability 0.1, and(A4, L) with probability 0.5.

22 23 24 l5
Figure 6: A Game for Kuhn’s Theorem, I.

We haver (B, R) = 0.4,01(B,L) = 0.1,01(4, L) = 0.5, and (since the mixed strategy is a probabil-
ity distribution),o1 (A4, R) = 0. Player 1 has two information sets: one after@hestory, and another after
the historieq 4, M) and(A, D). The behavior strategy will thus specify two probabilitgtdibutions, one
for each information set.

Sincehy = @ is the initial history, all pure strategies are consisteith\t. (This is trivially true: there
is no pure strategy for playeérsuch that this history cannot be reached.) Thus,

Rl(hl) = {(A’ L)’ (A’ R)’ (B? L)? (B’ R)}»

which also meang; (k1) = 1. Since there are two possible actions player 1 can takg ,alve must
calculaterry(hq, A) andny (h1, B). There are two pure strategiessuch thaty € Ry (k1) As1(h1) = A,
and these aréA, L) and (A4, R). Therefore,r1(h1,A) = 01(A, L) + 01(A4, R) = 0.5. Also, there are

8Sinceh; cannot be reached under, the behavior strategies At are arbitrary in the same sense that Bayes’ Rule does not
determine posterior probabilities after O-probabilitgets.
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two pure strategies such thgt € Ry(h1) A s1(h1) = B, and these aréB, L) and(B, L). This means
mi1(hy, B) = 01(B, L)+ 01(B, R) = 0.5. We now haveﬂl(hl)(A) = 7'[1(}11,14)/7'[1(]11) = 05/1 =0.5
and alsoB; (h1)(B) = w1 (h1. B)/m1(h1) = 0.5.° So,B1(h1)(A) = B1(h1)(B) = 0.5.

Now considerh, = {(A4, M), (A, D)}. The only pure strategies for player 1 that are consistetit wi
this history are the ones that specilyfor the move at the first information set. (That is, there tsxi®
strategy for player 2 such thas is reached if player 1 choosdsat the first information set.) Therefore,
Ri1(h2) = {(A, L), (A, R)}, which means that(h;) = 01(4,L) + 01(4, R) = 0.5. Since player 1
has two possible actions A%, we must also calculate; (k», L) andw; (hy, R). There is only one pure
strategy such that, € R1(h2) A s1(h2) = L, and itis(A4, L). Therefore i (ha, L) = 01(A4, L) = 0.5.
Also, there is only one pure strategy such thae Ry (h2) A s1(h2) = R, and itis(A4, R), which means
w1(ha, R) = 01(A4, R) = 0. We now have;‘}l(hz)(L) = ﬂl(hz,L)/T[l(hz) = 05/05 = 1, and we also
haveg (h2)(R) = m1(ha. R)/71(h2) = 0/0.5 = 0.1

We conclude that the mixed strategy has an equivalent behavior strategyy, which is as follows:

B1(h1)(A) = 0.5
B1(h1)(B) = 0.5
B1(h2)(L) =1
B1(h2)(R) =0

Let’s check the equivalence claim. L&t denote a mixed strategy for player 2. Using the mixed styateg
o1, the probabilities of reaching the outcomes are as follows:

Z1:[o1(A, L) + 01(A, R)]o2(U) = 0.502(U)
22 :01(A, L)oa (M) = 0.502(M)

73 :01(A,R)o,(M) =0

Z4 1 01(A, L)aa(D) = 0.502(D)

25 :01(A, R)o(D) =0

Z¢ :01(B,L) +01(B,R) =0.5

The distribution over outcomes usiag is then(0.50,(U), 0.502(M),0,0.502(D),0,0.5).
Using the behavior strateg’, the probabilities of reaching the outcomes are as follows.

21 : B1(h1)(A)o2(U) = 0.502(U)

221 B1(h1)(A)o2(M)B1(h2)(L) = (0.5)02(M)(1) = 0.502(M)
23 : B1(h1)(A)o2(M)B1(h2)(R) = (0.5)02(M)(0) = 0

241 B1(h1)(A)o2(D)B1(h2)(L) = (0.5)02(D)(1) = 0.502(D)
25 : B1(h1)(A)o2(D)B1(h2)(R) = (0.5)02(D)(0) = 0

26 : B1(m)(B) = 0.5

This yields the distribution over outcomé&5o,(U), 0.50,(M),0,0.50,(D),0,0.5) that is the same as
the one given by the mixed strategy. Therefore, we have slioati; and8; are equivalent.

9We verify thatB1(h1)(A) = 1 — B(h1)(B), which is indeed the case.
10we again verify that the distribution is valid, which it isdeise8 (h2)(L) + B1(h2)(R) = 1.
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2.4.3 A Mixed Strategy Can Generate Many Behavior Strateg®

Now let’s illustrate the claim that a mixed strategy may gateemore than one behavior strategy. Con-
sider the same game and supposéAd, L) = o1(4,R) = 0, 01(B,L) = 0.5, ando1(B, R) = 0.5.
As before, we haveRy(h1) = {(4,L),(A,R),(B,L),(B,R)}, andmy(h;) = 1. Further, we have
m1(hy, A) = 0 (because the mixed strategy assigns probability zero puedi strategies witky (h1) = A),
andswy(h1, B) = 1. Thus, we geﬁl(hl)(A) =0 and,Bl(hl)(B) =1.

We now have to specify the probability distribution for théarmation seti, = {(4, M), (A, D)}. Note
that Ry (hy) = {(A,L),(A,R)} andmy (hy) = 0. Further,ry(ha, L) = 01(A, L) = 0 andny(ha, R) =
01(A4, R) = 0. Hence, we cannot use the conditional formula to defip@,)(L). As noted before, in
this case we could use any probability distribution, ssletlys;(h2)(L) = x andBi(h2)(R) = 1 — x,
with x € [0, 1]. Clearly, there is an infinite number of possible specifarasihere.

Let's check equivalence. Under the mixed strategy, thegiibity distribution over outcomes is:

z1:[01(4, L) + 01(4, R)]o2(U) = 0
Z2:01(A, LYo (M) =0

23 :01(4, R)o2(M) =0

24 :01(A, LYo (D) =0

25 :01(A, R)o(D) =0
Z6:01(B,L) +01(B,R) = 1.

Under the behavior strategy, the probability distribution

21 B1(h1)(A)o2(U) =0

22 1 B1(h)(A)oa(M)B1(h2)(L) = (0)o2(M)x =0

23 1 f1(h1)(A)o2(M)B1(h2)(R) = (0)o2(M)(1 —x) =0
24 : B1(h1)(A)o2(D)B1(h2)(L) = (0)o2(D)x =0

25 : f1(h1)(A)o2(D)B1(h2)(R) = (0)o2(D)(1 —x) =0
Z6 : P1(h1)(B) = 1.

That is, the two distributions are the same. Note that thidshfor any value ofc we might have chosen.
Thus, one mixed strategy can generate more than one belstrategy. It should be obvious, however,
that if the mixed strategy reaches all information sets \pibkitive probability, then it must necessarily
generate a unique behavior strategy. Hence, a mixed straitger generates a unique behavior strategy
or else generates an infinite number of behavior strategies.

2.4.4 Different Mixed Strategies Can Generate the Same Bethiar Strategy

Now let’s illustrate the claim that different mixed straegycan generate the same behavioral strategy.
Consider the game in Fig. 7 (p. 18). Lkt denote the history following actioty by player 1, leth,
denote the history following>. Since there are two information sets, with two actions aheplayer 2
has four pure strategie¢é4, C), (A, D), (B,C), and(B, D).

Now consider two mixed strategies = (1/4, /4, 1/4, 1/4) andé, = (1/2,0,0, 1/2). Both of these gen-
erate the behavior strate@g, wheref,(h1)(A) = Ba(h1)(B) = o andBr(hy)(C) = Ba(h2)(D) =
1/,.11 To see thatr,, 6,, andB, are equivalent, note that they all yield the same distrisutiver the termi-
nal nodes for any arbitrary mixed strategy for player 1. B@meple, the probability of reaching, equals

11you should verify this. In our notationRy (k1) = Ra(ha) = {AC,AD, BC, BD}. That is, all strategies for player
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<1 22 23 24

Figure 7: A Game for Kuhn's Theorem, Il.

o01(U)/2 regardless of whether we calculate it undeywhere it equals (U)[o2(A, C) + 02(A, D)], or

undera,, where it equals (U)[62(A4, C)+62(A, D)], or unders,, where it equals (U)B2(h1)(A). As

you probably already see, there will be an infinite number xieoh strategies that generate this behavior

strategy: Allo, such thab, (A4, C) 4+ 02(A, D) = 1/, ando,(A,C) 4+ 02(B, C) = 1/ will do that.
Although it is important to distinguish between the two tyd probabilistic strategies, in practice we

shall use behavior strategies throughout the rest of tassclBecause it is cumbersome to refer to them as

such all the time, whenever we refer to a mixed strategy ofkéansive form game, we shall always mean

a behavior strategy (unless explicitly noted otherwise).this end, we shall also retain oarnotation

for mixed strategies: Let;(a;|h;) denote the probability with which playérchooses actiom; at the

information set; .

3 Nash Equilibrium in EFG

We already know how to solve strategic form games and we alsw kow to convert extensive form to
strategic form as well. The solution concept we now defineiigs the sequential nature of the extensive
form and treats strategies as choices to be made by playere ladl play begins (i.e. just like in strategic
games).

DEFINITION 6. A Nash equilibrium of a finite extensive-form gamerI is a Nash equilibrium of the
reduced normal form gam@ derived fromI.

We can do this because the finite extensive form game has a $indategic form. More generally
though, a Nash equilibrium of an extensive form game is degyeprofile(s;, s* ;) such that; (s, s*,) >
u; (si,s*;) for each playei and alls; € S;. That s, the definition of Nash equilibrium is the same as for
strategic games (but be careful how you specify the stredgeugre).

Finding the Nash equilibria of extensive form games thusskiown to finding Nash equilibria of their
reduced normal form representations. We have already dog&vith Myerson’s card game, reproduced
in Fig. 8 (p. 19).

2 are consistent with these histories. This is triviallyetrbecause she has no move to determine which of these histo-
ries is reached. We then calculate the probability asstiatith each history, which, given that all strategies arest

tent with it, is simplyna(h;) = ZszeRz(hl)UZ(h) = 1. Next, we calculate the probability of taking actioh after

hy: w(hy, A) = ZS2eRz(h1)ASZ(h1)=A 02(s2) = 02(AC) + 02(AD) = 0.5. Finally, we calculate the behavior strategy
B2(h1)(A) = ma(hy, A)/m2(h1) = (0.5)/(1) = 0.5. We can generate the other strategy in a similar way.
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2,2 1,-1 2,-2 1,-1

Figure 8: Myerson’s Card Game in Extensive Form.

Recall that the mixed strategy Nash equilibrium of this gasne

<(§[R,r1, ). (G %{p])>.

If we want to express this in terms of behavior strategiesywveld need to specify the probability distri-
butions for the information sets. Player 1 has two infororasetsp following the black card, and fol-
lowing the red card. The probability distributions &P&[F], 1/3[R]) at information seb, and(0[ /], 1[r])
at information set. In other words, if player 1 sees the black (losing) card,dbdsfwith probability 25.
If he sees the red (winning) card, he always raises. Plagdyetiavior strategy is specified above (she has
only one information set).

Because in games of perfect recall mixed and behavior gtestare equivalent (Kuhn's Theorem), we
can conclude that a Nash equilibrium in behavior strategiest always exist in these games. This follows
directly from Nash’s Theorem. Hence, we have the followmmgartant result:

THEOREM 2. For any extensive-form ganiéwith perfect recall, a Nash equilibrium in behavior strate-
gies exists. o

3.1 The Problem of Counterfactuals

Generally, the first step to solving an extensive-form gasre find all of its Nash equilibria. The theorem
tells us at least one such equilibrium will exist. We furthere know that if we find the Nash equilibria
of the reduced normal form representation, we would findalilébria for the extensive form. Hence, the
usual procedure is to convert the extensive-form game ategfic form, and find its equilibria.

Some of these equilibria would have important drawbacksibee they ignore the dynamic nature of
the extensive-form. This should not be surprising: afternved obtained the strategic form representation
by removing the element of timing of moves completely. Reard Selten was the first to argue that some
Nash equilibria are “more reasonable” than others in hi$¥d6cle. He used the example in Fig. 9 (p. 20)
to motivate the discussion, and so will we.

The strategic form representation has two pure-strategghNquilibria, (D, L) and (U, R).}? Look
closely at the Nash equilibriur(U, R) and what it implies for the extensive form. In the profilg, R),

12What about mixed strategies? Suppose player 1 randomizes)ich case player 2's best responsd.isBut if this is the
case, player 1 would be unwilling to randomize and would cledd instead. So it cannot be the case that player 1 mixes in
equilibrium. What if player 2 mixes? Let denote the probability of choosing. Player 1's expected payoff froi is then
2q +2(1 —¢q) = 2, and his expected payoff frol? is 3¢q. He would choosé/ if 2 > 3¢, or 2/3 > ¢, otherwise he would choose
D. Player 2 cannot mix with > ¢ > 2/3 in equilibrium because she has a unique best responBe Ttherefore, she must be
mixing with 0 < ¢ < 2/3. For any sucly, player 1 would playU. So, there is a continuum of mixed-strategy Nash equilibria
where player 1 choosd$, and player 2 mixes with probability < 2/3. These have the same problem{&s R).
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L R

3,1 0,0
Figure 9: Selten’s Example.

player 2’s information set is never reached, and she losegngoby playingR there. But there is some-
thing “wrong” with this equilibrium: if player 2’'s information set is ever reached, then she would be
strictly better off by choosind. instead ofR. In effect, player 2 is threatening player 1 with an acticat th
would not be in her own interest to carry out. Now player 2 dbésin order to induce player 1 to choose
U at the initial node thereby yielding her the highest paydf2.0But this threat is not credible because
given the chance, player 2 will always play and therefore this is how player 1 would expect her to play
if he choosesD. Consequently, player 1 would choo®eand player 2 would choosk, which of course
is the other Nash equilibriurtD, L).

The Nash equilibriumU, R) is not plausible because it relies on an incredible thréwt (s, it relies
on an action which would not be in the interest of the playaraiwy out). In fact, none of the MSNE will
be plausible for that very reason either. According to outivation for studying extensive form games,
we are interested in sequencing of moves presumably bepaysas get to reassess their plans of actions
in light of past moves by other players (and themselves)t iBhaonterminal histories represent points at
which such reassessment may occur. The only acceptablmsdadhould be the PSNED, L).

The following definition is very important for the discussithat follows. It helps distinguish between
actions that would be taken if the equilibrium strategiesiarplemented and those that should not.

DEFINITION 7. Given any behavior strategy profile and information set is said to lwn the path of
play if, and only if, the information set is reached with positpmbability according tar. If ¢ is an
equilibrium strategy profile, then we refer to tbguilibrium path of play

To anticipate a bit of what follows, the problem with t{ié, R) solution is that it specifies the incredible
action at an information set that is off the equilibrium paftplay. Player 2’s information set is never
reached if player 1 choosés (it is a counterfactual). Consequently, Nash equilibritamrmot pin down
the optimality of the action at that information set. Thelpeon will not extend to strategy profiles which
visit all information sets with positive probability. Theason for this is that if the Nash equilibrium profile
reaches all information sets with positive probabilityerthit will also reach all outcomes with positive
probability. But if it does so, the fact that no player canfpioy deviating from his Nash strategy implies
that there would exist no information set where he would wartdeviate. In other words, his actions at
all information sets are credible. If, on the other hand, Nlzsh strategies leave some information sets
off the path of play, then the Nash requirement has no bitatewer the player does at these information
sets is “irrelevant” as it cannot affect his payoffs. It isdenthese circumstances that he may be picking
an action that he would not never choose if the informatidnissactually reached. Notice that unlike
(U, R), the other PSNE D, L) does reach all information sets with positive probabilitp. this case,
Nash’s requirement is sufficient to establish optimalitytred strategies everywhere. As we shall see, our
solutions will always be Nash equilibria. It's just that radtNash equilibria will be reasonable.

It is worth emphasizing that the problem is in scenarios tltahot arise when the strategies are fol-
lowed. The problem is especially acute when the cause oétheategies being optimal is incredible
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behavior in counterfactual scenarios. The definition dbretlity that requires mutual best responses on
the path of play only (Nash equilibrium) cannot pin down iwlgetble counterfactuals that rationalize that
behavior. We shall, therefore, strengthen the definitioratdbnality to require that behavior in counter-
factual scenarios (contingencies that do not arise whestthtegies are followed) is rational in the Nash
sense.

3.2 Backward Induction

Consider any game of complete and perfect information (e game where all information sets are
singletons). Such a game can be solvethagkward induction, a technique which involves starting from
the last stage of the game, determining the last mover'sdm®in at his information set there, and then
replacing the information set with the payoffs from the ame that the optimal action would produce.
Continuing in this way, we work upwards through the treelum# reach the first mover’s choice at the
initial node.

In 1913 Zermelo proved that chess has an optimal solutionreBlgoned as follows. Since chess is a
finite game (it has quite a few moves, but they are not infinttéy means that it has a set of penultimate
nodes. That is, nodes whose immediate successors areaémodes. The optimal strategy specifies that
the player who can move at each of these nodes chooses thetmabvwéelds him the highest payoff (in
case of atie he makes an arbitrary selection). Now, the @pstrategies specify that the player who moves
at the nodes whose immediate successors are the penulhoige chooses the action which maximizes
his payoff over the feasible successors given that the plhger moves there in the way we just specified.
We continue doing so until we reach the beginning of the tvéken we are done, we will have specified
an optimal strategy for each player.

These strategies constitute a Nash equilibrium becausepdayger’s strategy is optimal given the other
player's strategy. (In fact, these strategies also meestitemger requirements of subgame perfection,
which we shall examine in the next section. Kuhn’s paper ipies/a proof that any finite extensive form
game has an equilibrium in pure strategies. It was also smghper that he distinguished between mixed
and behavior strategies for extensive form games.) Hemctllowing result:

THEOREM 3 (ZERMELO 1913; KUHN 1953). A finite game of perfect information has a pure strategy
Nash equilibrium. o

It is important to realize that this technique ensures Nastabior in all possible contingencies, includ-
ing the counterfactuals that do not arise when the optimmategiies are followed. Since Selten’s game
in Fig. 9 (p. 20) is one of complete and perfect informatioe, @an apply backward induction to find an
equilibrium with this feature as well. At her informationtsplayer 2 would choosé. This reduces player
1's choices betwee® (which, given player 2's strategy would yield 3) abd which yields 2. Therefore,
player 1 would choos®. The equilibrium with Nash behavior everywherd i3, L).

Kuhn’s theorem makes no claims about uniqueness of thelleguimh. However, it should be clear that
if no player is indifferent between any two outcomes, themequilibrium will be unique. Note that all
equilibria computed with backward induction are Nash elgud. (The converse, of course, is not true:
the whole point of this exercise is to eliminate Nash equdilthat seem implausible.)

3.3 A Crisis Escalation Game

Consider the game of complete and perfect information shiovAig. 10 (p. 22).

What are the Nash equilibria of this game? As usual, we cotisrto strategic form, as shown above.
(We shall keep the non-reduced version to illustrate a goifihe Nash equilibria in pure strategies are
((~e,a),r), ((~e,~a),r), and{(e, a), ~r), and two of them are suspect.
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Player 2
r ~r
(e,a) | —15,—15 | 10,—10
1 (e,~a) | —10,10 10, —10
(~e,a) 0,0 0,0
(~e, ~a) 0,0 0,0

Player

Figure 10: Basic Escalation Game.

The problem with the Nash equilibrium profiléé~e, a), r) and((e,a), ~r) is that they leave infor-
mation sets off the equilibrium path of play and so Nash oagliityycannot pin down behavior at sets that
are never reached. For examp|&;,, a), ~r) leaves player 1's second information set off the path of,play
which causes the strategy to miss the fact éhigtnot rational at that set. This incredible threat ratices
player 2’s choice of-r causing her to take an action that leaves this informatibofsthe path. Similarly,
((~e,a), r) leaves both player 1's second information set and playem&smation set off the path of
play and causes the strategies to miss two problems: pléyehdaice ofa is not rational at his second
information set, and given that choice, player 2's choice ©f not rational either! In other words, since
the equilibrium path of play does not realize some contingex; Nash cannot pin down optimal behavior
there.

Applying backward induction leaves onlf~e, ~a), r) as the equilibrium, as illustrated in Fig. 11
(p. 22). This eliminates two of the pure-strategy Nash dgyial, and demonstrates why it is extremely
important that strategies specify moves even at informatiets that would not be reached if the strategy
is followed.

—15,-15

—10, 10

0,0

Figure 11: Backward Induction in the Escalation Game.

The only reason why~ e is rational at player 1's first information set is because/@ia2’s rational
strategy prescribes, which in turn is only rational because she expects playerchbose~a at his last
information set, where this is the rational choice. In otherds, the optimality of player 1’s initial action
depends on the optimality of his action at his second inféionaset. This is precisely why we cannot
determine optimality of strategies unless they specifyttao for all information sets. Note that in this
case, the second information set is not reached if the gyrdtee, ~a) is followed, but we still need to
know the action there.

3.4 The Ultimatum Game

Two players want to split a pie of size > 0. Player 1 offers a division € [0, 7] according to which his
share isx and player 2’s share is — x. If player 2 accepts this offer, the pie is divided accortindf
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player 2 rejects this offer, neither player receives amghirhe extensive form of this game is represented
in Fig. 12 (p. 23).

X, T —X 0,0

Figure 12: The Ultimatum Game.

In this game, player 1 has a continuum of action availabléairitial node, while player 2 has only
two actions. (The continuum of actions ranging from offgrihto offering the entire pie is represented
by the dotted curve connecting the two extremes.) When plhyeakes some offer, player 2 can only
accept or reject it. There is an infinite number of histor@toWing a history of length 1 (i.e. following
a proposal by player 1). Each history is uniquely identifigathie proposalx. After all histories with
x < m, player 2's optimal action is to accept because doing salyialstrictly positive payoff which is
higher than 0, which is what she would get by rejecting. Aftex historyx = 7z, however, player 2
is indifferent between accepting and rejecting. So by backwnduction, 2’s strategy must be to either
accept all offers (including = =) or to accept all offers < = but to rejectx = 7.

Consider player 1's optimal strategy, which depends on lwhbicplayer 2's optimal strategies she is
supposed to follow. If player 2 accepts all offers, then ptals optimal offer isc = 7 because this yields
the highest payoff. If player 2 rejects = = but accepts all other offershere is no optimal offer for
player 1! To see this, suppose player 1 offered some s, which player 2 accepts. But because player
2 accepts alk < 7, player 1 can improve his payoff by offering somesuch thatx < x’ < 7, which
player 2 will also accept but which yields player 1 a striditter payoff.

Therefore, the ultimatum game has a unique equilibriumionbthby backward indiction, in which
player 1 offersx = 7 and player 2 accepts all offers. The outcome is that playetd tgp keep the entire
pie, while player 2's payoff is zero.

This one-sided result comes for two reasons. First, playem®t allowed to make any counteroffers.
If we relaxed this assumption, as we shall do next, the dayiilin will generally be different. Second,
the reason player 1 does not have an optimal proposal whgerpkaaccepts all offers has to do with
him being able to always do a little better by offering to keéghtly more. Because the pie is perfectly
divisible, there is nothing to pin the offers. However, nmakthe pie discrete (e.g. by slicing it inkoequal
pieces and then bargaining over the number of pieces eaghrgats to keep) will change this as well.

It is worth noting that sometimes scholars impose a requérdrthat whenever a player is indifferent
between two actions, she chooses one of them. (In this das®uld go something like, “if player 2
is indifferent between accepting some offer and rejectinghien she accepts it”.) This makes it sound
like we have introduced a indifference-breaking rule as phthe equilibrium definition. This is not the
case! As the discussion above makes clear, there is nolaquiti in which player 2 rejects an offer when
indifferent because there is no best response to such egstrathus, it is part of the equilibrium that she
accepts it, not some extra requirement.
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3.5 Finite Horizon Bargaining with Alternating Offers

The Ultimatum Game does not allow player 2 to make countersf which gives all the bargaining
leverage to player 1. Let’s see what happens if she can t@gptoposal in order to make a counter-offer.
Players 1 and 2 are bargaining over the division of a benefitzefr > 0 using the alternating offers
protocol. Player 1 starts in period 1 by making an offgre [0, ], which player 2 can either accept or
reject. If she accepts, the game ends with the $plit- x1, x1). If she rejects, the game moves to period
2, where player 2 makes an offes € [0, ] that player 1 can either accept or reject. If player 1 accepts
the game ends with the split,, 7 — x»). If he rejects, the game moves to period 3, where player 1 snake
an offer, and so on. The bargaining continues up feeriods, and ends ifi + 1 with both players getting

nothing if no agreement has been reached. Players discetiatp by a common factdre (0, 1).

We shall consider the game wifh odd, which means that player 1 is the last to make an offerrbefo
the game ends (the other case is analogous). Consider thpdiiad T': this is the Ultimatum Game that
we just analyzed. If player 2 rejects, she will obtain a payoff of 0, and so she is willing to accept a
xt > 0, and is indifferent ifxz = 0. In equilibrium, she must acceptr = 0 (because if she were to
reject it with positive probability, player 1 has no bestpasse: any offer better than zero would result
in acceptance but each such offer can be improved upon bgraffslightly less), and so player 1 would
offer xy = 0.

Consider nowl” — 1: if player 1 rejectscr—1, he will obtainz in the next period, but because he has to
wait for that, his present discounted value of rejectiobvis This is now an Ultimatum Game with player
2 making the demand except that player 1 gets a strictlyipegitiyoff if he rejects. Not surprisingly, the
logic of the Ultimatum Game tells us that player 2 would estithe entire surplus with her offer. Player 1
would accept any offer that is strictly better than this reagon value and reject anything less than that. In
equilibrium, he must accept when indifferent, and sinceraffy anything more than that is not profitable
for player 2, she must offer7_; = §x, which will be accepted.

Consider nowl" —2: if player 2 rejectscr—»,, she will obtainr — 7 = (1 —§)7 in the next period, but
because she has to wait for that, her present discounted ohhejection isS(1 — §)r. By the arguments
abovexr_, = én — dx7—1, which she accepts.

Consider nowl" — 3: if player 1 rejectscr_3, he will obtainz — x7_,, and since he must wait for that,
his reservation value i — x7_,). By the arguments above, player 2 offets_; = éw —Sx7—_5, which
he accepts.

Consider nowl” — 4: player 2’s reservation value &m — x7—3), so player 1's equilibrium offer must
beXT_4 =ém — SXT_3.

The pattern is clear: in any perioce {1, ..., T — 1}, the offer is defined recursively as

Xy = 6w — X141,

with x7 = 0. You could use difference equations to solve this or youatgol about it as follows. We can
write the pattern:

Xr_1=m6

XT—p = 71(8 — 82)

x7—3 = (8 — 8% + §3)

xr_4 = (8 —8%+83—8%
xr_s = (8 —8% + 83 —8%+68°)
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t
X7y = —m e Y ()"
=1

There are a couple of ways to solve this. One involves apglifie formula for a finite geometric serigs.
The other method is to calculate it using the formulas fotdiand infinite sums?*

t
—§(1=(=8T) 1—(=8§T
e . — ? = — _— = -
XT—t = —T r:Zl( ) 7T|: =5 om T35 .
Since the first-periodt (= T — 1) offer is accepted, player 1's equilibrium share is:

[ 5(1-(-5)“)} [1+5(—5)T—1} 7(1 +87)
T—x1=n|l—-—— = | =mx =

’

144 146 1+4

where the last step follows from the fact that whrns odd, (—8§)7 ~! = §7~1. Player 2’s share is, of
course, juste; < 7 — xq.

Thus, we conclude that in the unique SPE players must reaagraements immediately, and no delay
wil occur. Note that player 1 has a double advantage: as#tenover he gets to extract the entire surplus
in the final period, which then “percolates” to up the game tréth player 2 being forced to make large
concessions; and as tfiest mover he gets to extract the entire surplus from delaying agreeme

What happens to the shares if one increases the number gbénuels? It is clear that player 1's share
is decreasingn T', and converges to:

l _ T
Tinoo o= 146

13The formula is:

i a; = a 1=
' i = 1—r
i=1
with a firstterma; = a = —§ and common ratie = —4§. This yields the offer for any arbitrary period:

5 1—(=8)"
XT—t = —_— |-
T—t T 1+6

14 you cannot recall these formulas, you can derive them limAie. First, you will need to know the sum of the infinite i
Y r2oa’ =1/(1 —a), wherea € (—1, 1). This you can get as follows:

o0 o0 o0 1
t 1 2 3 1 2 t t
a=14+a +a"+a +...=14a(l4+a +a“+...)=1+4a a = a = .

We need a finite sum, which we can express as follows:

T [ele) [ele) 00
Zat:Zat_ Zat:Zat_aT+1
t=0 t=0 t=0 t

t=T+1

o0

1—a
t T-1 t -
Oa ( a E a T—2

~
I
o

The indexing in our expression startg at 1, so we obtain:

T
2.4

t=1 t

T
0 1—qT+1 a(l—a )

adt—a’=—— 1=
l1—a 1—a
0

T
Lettinga = —4 yields the result.
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which means that longer time horizons make the distributimme equitable by limiting the surplus that
player 1 can extract from player 2. Of course, the number abgds will not matter if players do not
care about the future: in the extreme, with— 0, player 1 will take everything. However, as players
become very patient, player 2 begins to acquire some bangaieverage, and in the limit, “force” an

equal division of the pie:
v/

lim —— = —.
§—>11+4+46 2
We shall have occasion to comment on these results when wgsdialternating-offers bargaining without
a set time horizon®

4 Subgame-Perfect Equilibrium

If you accept the logic of backward induction, then the foflog discussion should seem a natural exten-
sion. Consider the game in Fig. 13 (p. 26). Here, neitherafqil 2's choices is dominated at her second
information set: she is better off choosidyif player 1 playsA and is better off choosing if player 1
plays B. Hence, we cannot apply backward induction (yet).

However, we can reason in the following way. The game thainisegith player 1's second information
set—the one following the histor§D, R)—is a zero-sum simultaneous move game. We have seen similar
games, e.g., MTCHING PENNIES. The expected payoffs from the unique mixed strategy Nashiledgum
of this game ar€0, 0). Therefore, player 2 should only chooReif she believes that she will be able to
outguess player 1 in the simultaneous-move game. In pkatjdhe probability of obtaining 2 should be
high enough (in outweighing the probability of obtainir@) that the expected payoff frorR is larger
than 1 (the payoff he would get if he play&d. This can only happen if player 2 believes she can outguess
player 1 with a probability of at least/s, in which case the expected payoff from will be at least
3/4(2) + 1/4(=2) = 1. But, since player 2 knows that player 1 is rational (anddfwe just as cunning
as she is), it is unreasonable for her to assume that she tguess player 1 with such high probability.
Therefore, player 2 should chooseand so player 1 should go. The equilibrium obtained by backward
induction in the game in Fig. 13 (p. 26), then{iD, 1/[A4]), (L, 12[C])).

2,-2 -2,2 -2,2 2,-2
Figure 13: The Fudenberg & Tirole Game.

150ne must be careful with the limits here. | used nested liffiitst on the length of the interaction and then on the distoun
factor) but one can easily see that the multivariate ligfit,5) — (oo, 1) is indeterminate — if | were to take the nested limit in
the reverse order, | will end up with lign,; # — x1 = 7, which is clearly independent af.
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This now is the logic of subgame perfection: replace everpppr subgame” of the tree with one of
its Nash equilibrium payoffs and perform backward inductan the reduced tre€. For the game in
Fig. 13 (p. 26), once we replace the subgame that startsyardl®s second information set with the Nash
equilibrium outcome, the game becomes the one in Fig. 9 (pwatich we have already analyzed and for
which we found that the backward-induction equilibrium(13, L).

We were a little vague in the preceding paragraph. Beforeonmdlly define what a subgame perfect
equilibrium is, we must define what constitutes a “propemgsube.” It really isn’t hard: a proper subgame
is any part of a game that can be analyzed as a game itself.

DEeFINITION 8. A proper subgameG of an extensive-form gamE consists of asingle decision node
and all its successors i with the property that ifc’ € G andx” € h(x’), thenx” € G as well. The
payoffs are inherited from the original game.

That is,x” andx” are in the same information set in the subgame if and onlyeif tre in the same
information set in the original game. The payoffs in the suhg are the same as the payoffs in the original
game only restricted to the terminal nodes of the subgamée that the word “proper” does not mean
strict inclusion as in the term “proper subset.” Any gameligagis a proper subgame of itseélf.

Proper subgames are quite easy to identify in a broad classtefsive form games. For example, in
games of complete and perfect information, every inforamaset (a singleton) begins a proper subgame
(which then extends all the way to the end of the tree of thgimal game). Each of these subgames
represents a situation that can occur in the original game.

On the other hand, splitting information sets in games ofdrfgrt information produces subgames
that are not proper because they represent situationsahabtoccur in the original game. Consider, for
example, the game Fig. 14 (p. 27) and two candidate subgames.

Figure 14: A Game with Two “Improper” Subgames.

The two subgames to the right of the original game are notgurophe first one fails the requirement
that a proper subgame begin with a single decision node. &bend one fails the requirement that if
two decision nodes are in the same information set in thenaliggame, they must also be in the same
information set in the proper subgame.

The reasons for these restrictions are intuitive. In thedase, player 2 needs to know the relative prob-
abilities for the decision nodes andx” but the “game” specification does not provide these proliaisil
Therefore, we cannot analyze this situation as a separate.ghn the second case, player 2 knows that
player 1 did not playD, and so has more information than in the original game, wherdid not know
that.

18)f the game has multiple Nash equilibria, then players mgse@ on which of them would occur. We shall examine this
weakness in the following section.

1"Rasmusen departs from the convention in his bGeknes and Informatigrwhere he defines a proper subgame to mean
strict inclusion, and so he excludes the entire game fronséheWe shall follow the convention.
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To make things a little easier, here are some guidelinesléntifying subgames. A subgame (a) always
starts with a single decision node, (b) contains all suarsd® that node, and (c) if it contains a node in
an information set, then it contains all nodes in that infation set. (Never split information sets.)

Now, given these restrictions, the payoffs conditional eaching a proper subgame are well defined.
We can therefore test whether strategies are a Nash equititin the proper subgame as we normally do.
This allows us to state the new solution concept.

DEFINITION 9. A behavior strategy profile of an extensive form game issabgame perfect equilib-
rium (SPE) if the restriction o to G is a Nash equilibrium for every proper subgatie

You should now see why it was necessary to define the behdvéegies: some proper subgames (e.g.
the one in F&T's Game from Fig. 13 (p. 26)) have subgames wtiereNash equilibrium is in mixed
strategies, which requires that players be able to mix dt gdormation set. (You should at this point go
over the difference between mixed and behavior strategiextensive-form games.)

This now allows us to solve games like the one in Fig. 13 (p. Z)ere are three proper subgames:
the entire game, the subgame beginning with player 2'sindébion set, and the subgame that includes the
simultaneous moves game. We shall work, as we did with backimauction, our way up the tree. The
smallest proper subgame has a unique Nash equilibrium iedrskrategies, where each player chooses
one of the two available actions with the same probability5of Given these strategies, each player’s
expected payoff from the subgame is 0. This now means thgepRwill chooseL at her information
set because doing so nets her a payoffs strictly larger thaosingR and receiving the expected payoff
of the simultaneous-moves subgame. Given that player 2selsdo at her information set, player 1's
optimal course of action is to gb at the initial node. So, the subgame perfect equilibriumhisf game is
((D, /). (L. 1/2)).

Let's compare this to the normal and reduced normal formhisfextensive-form game; both of which
are shown in Fig. 15 (p. 28).

Player 2
LC LD RC RD L RC RD
uAl 22 [ 22 ] 2.2 | 2.2 Ul22 1221 22
UB| 2.2 | 22 | 2.2 | 2.2 DA 3.1 |22 2.2
Playerl o 31 131 (2.2 2.2 DB | 3.1 | —2.2 2.2
DB | 3.1 | 3.1 |—2.22—2

Figure 15: The Normal and Reduced Normal Forms of the Ganme Fig. 13 (p. 26).

The normal form game on the left has 4 pure strategy Nashileqail(UA, RC), (UA, RD), (UB, RC),
and(UB, RD). The reduced normal form game has only twb, RC) and(U, RD). None of these are
subgame perfect. However, the reduced form also has a Nastbegm in mixed strategieqp ", 05), in
whicho{(DA) = o (DB) = 1, ando(U) = 0; whileo; (L) = 1, ando} (RC) = 02(RD) = 0. The
Nash equilibrium is

((0, 12, 1/2).(1,0,0))

which is precisely the subgame-perfect equilibrium weaalyefound.

At this point you should make sure you can find this mixed sgratNash equilibrium. Suppose player
2 choosesk(C for sure, thenDB is strictly dominated, so player 1 will not use it. Howevdrtistnow
meansR D strictly dominateskRC for player 2, a contradiction. Suppose now that she cho&degor
sure. ThenDA is strictly dominated, so player 1 will not use it. But nadC strictly dominateskRD, a
contradiction. Therefore, there is no equilibrium in whiglayer 2 chooses eithe®C or RD for sure.
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Suppose player 2 puts positive weight dnand RC only. Then, DA is strictly dominant for player
1. However, 2’s best response B is RD, a contradiction with supposition that she does not play it.
Hence, no MSNE in which she plays onlyand RC. Suppose now that she plagsand RD only. Then
DB is strictly dominant, but player 2's best response to thiR@3, a contradiction. Hence, no MSNE in
which she plays only. and R D either. Suppose next that she pla&86€ and RD only. ThenU is strictly
dominant, and since player 2's payoff is the same agdinstgardless of the strategy she uses, we have a
continuum of MSNE{U, 02(RC) € (0,1),02(RD) = 1 — 02(RC)). Suppose next she playsfor sure.
Then player 1 is indifferent betwedndA and DB, each of which strictly dominatdg, so he can mix with
01(DA) € (0,1) ando1(DB) = 1 — o1(DA). Since player 2 must not be willing to use any of her other
pure strategies, it follows thdf, (o1(DA), RC) < 1 & 01(DA) > /4, andUz(01(DA),RD) <1 &
01(DA) < 3/s. Thereforeg1(DA) € [1/4, 3/4] are all admissible mixtures, and we have a continuum of
MSNE. The subgame-perfect MSNE is among these: the oneow{tRA) = 1/,.18

As you can see, we found a lot of MSNE but only one of them is aoiegperfect. This reiterates the
point that all SPE are Nash, while not all Nash equilibriasuregame-perfect. Note the different way of
specifying the equilibrium in the extensive form and in teduced normal form.

We can now state a very important result that guaranteesvihaan find subgame perfect equilibria for
a great many games.

THEOREM 4. Every finite extensive game with perfect information hastmame perfect Nash equilib-
rium. 0

To prove this theorem, simply apply backward induction thraethe optimal strategies for each subgame
in the game. The resulting strategy profile is subgame perfec

Let’s revisit our basic escalation game from Fig. 10 (p. 2Rhas three subgames, shown in Fig. 16
(p. 29) and labeled I, II, and Ill. What are the pure-stratd@sh equilibria in all these subgames? We
have already found the three equilibria of subgamg-e, a),r), ((~e, ~a),r), and{((e,a), ~r). The
Nash equilibrium of subgame Il is triviak-a. You should verify (e.g. by writing the normal form) that
the Nash equilibria of subgame 1l argz, ~r) and{~a, r).

Figure 16: The Subgames of the Basic Escalation Game.

Of the three equilibria in subgame | (the original game),clhibnes are subgame perfect? That is, in
which of these do the strategies constitute Nash equilibrééi subgames? The restriction of the strategies
to subgame Il shows that no strategy profile that involveshang other than the combinatiots, ~r) and
(~a, r) would be subgame perfect. This eliminates the Nash equitibprofile ((~e, a), r) of the original
game. Further, the restriction of the strategies to gamgelthonstrates that no profile that involves player
1 choosing anything other tharu would be subgame perfect either. This eliminates the Naghilegum

18] leave the final possibility as an exercise: what happenifar 2 puts positive weight on all three of her strategies?
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profile ((e, a), ~r) of the original game. There are no more subgames to checkharefore all remaining
Nash equilibria are subgame perfect. There is only one m@ngaiNash equilibrium:{(~e, ~a), r) and
this is the unique subgame perfect equilibrium. Of coutde the one we got from our backward induction
method as well.

Subgame perfection (and backward induction) eliminateslibgja based upon non-credible threats
and/or promises. This is accomplished by requiring thagygta are rational at every point in the game
where they must take action. That is, their strategies meistptimal at every information set, which is
is a much stronger requirement than the one for Nash equitibrwhich only demands rationality at the
first information set.

Note that nowhere in our definition of extensive form gamelsi restrict either the number of actions
available to players at their decision nodes nor the numbéedsion nodes. For example, a player may
have a continuum of actions or some terminal history may fieitely long. If a player has a continuum
of action at any decision node, then there is an infinite nunobéerminal histories as well. We must
distinguish between games that exhibit some finiteness finage that are infinite.

If the length of the longest terminal history is finite, théxe game haénite horizon. If the game has
finite horizon and finitely many terminal histories, then ¢fane idfinite. Backward induction only works
for games that are finite. Subgame perfection works fine farita games.

4.1 The Dollar Auction

Let's now play the following game. | have $1 that | want to @etoff using the following procedure.
Each student can bid at any time, in 10 cent increments. Whesne wants to bid further, the auction
ends and the dollar goes to the highest bidder. Both the &iidlidder and the second highest bidder pay
their bids to me. Each of you has $3.00 to bid with and you cehitbmore than that.

[ What happened? ]

Let's analyze this situation by applying backward inductioConsider a game with 2 players, and
assume that it is not worth spending a dollar in order to wirollad Because of the budget constraint,
whoever bids $3.00 will win the auction. When would a playesravant to bid $3.00? Clearly, the only
reason to do so would be if that player is attempting to avda$a from an existing bid. Let > 0 be that
player last bid that he would have to pay if he loses the anctite would bid $3.00 if

$1-$3.00>—x = x>%$.0 = x>$2.10,

where the last step follows from the assumption that plagarsonly bid in $0.10 increments. That is,
if a player ever bids $2.10 or more, then he must be willingdcali the way up to $3.00 and win the

auction. The reason is simple: not bidding at this point waertail a loss of $2.10, whereas bidding at
the maximum would entail a loss of $2.00 only. Thus, whoevds $2.10 first has a credible threat to
escalate the auction to $3.00 and win it. This means thattther player has no incentive to attempt to
outbid him. In effect, the $2.10 bid is “equivalent” to thenming $3.00 bid in that it also wins the auction
immediately.

Why would anyone bid $2.10 though? Again, since doing so anding entails a certain loss, it must
be that not doing so would incur an even bigger loss. In othendw; the player willing to escalate to
$2.10 must have made a previous bid that they would lose sithey escalate. Let > 0 be that player’s
existing bid. He would bid $2.10 only if

$1 -$.10>—-y = y>$1.10 = y=>31.20,
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where we used the $0.10 increment rule again. So, if somepéser bids $1.20 or more, then he must be
willing to go all the way to $2.10 to win the auction, whereeahould recall, the bidding would have to
end for sure because this player has a credible threat td theeabay to $3.00 in order to win. This means
that the other player has no incentive to attempt to outhia hich would end the auction immediately.
In effect, the $1.20 bid is “equivalent” to the winning $2.40d $3.00 bids in that it also wins the auction
immediately.

Why would anyone bid $1.20 though. Since this still entailess even in winning the auction, it must
be that the player’s previous bid is positive and he does aoit ¥o lose it. Let; > 0 denote that bid. The
player would bid $1.20 only if

$1-%$1.20> -2z = z>%$020 = z>$0.30,

where the increment rule came into play again. Whoever d30Sor more must be willing to go all the
way to $1.20 to win the auction. Since that player has a clediiyeat to continue up to $3, the other
player has no incentive to attempt to outbid him, and so tleti@u must end immediately. In effect,
the $0.30 bid is “equivalent” to the winning $1.20, $2.10d &3.00 bids in that it also wins the auction
immediately.

If someone bids $0.30, then nobody with a smaller bid has egniive to challenge him, and knowing
this no such bids should be made. Thus, in the SPE, the plagenmtoves first should bid $0.30, and the
auction would end, giving him a profit of $0.70 and allowing tither player not to suffer any losses. (The
auctioneer would lose here.)

How does that correspond to our outcome? | bet (pun intergikoo well. | usually auction off the
dollar for a profit of about $2 with grad students, and mora tthauble that with undergrads.

Before pondering why, let us look at an extensive-form re@ngation of a simpler variant, where two
players have $3.00 each but they can only bid in dollar iner@siin an auction for $2.00.

$3 1 Pass
-1,0 $1 $2 0,0
2
Pas $3
0,0 -2,—1

—-1,0 —-1,-2

Assume, as before, that if a player is indifferent betweeldibig and passing, they pass. We begin
with the longest terminal history$l, $2), and consider 1's decision there. Since 1 is indifferentvbet
Passing and bidding $3, player 1 would pass. This means tagemp2 would be indifferent between
bidding $2 and passing at the decision node following hystt ), and so she would pass. The subgame
beginning at the information sé$1) has a unigue SPE in pure strategiéassPas$.

At the decision node following historg$2), player 2's unique optimal action is to pass, and so the
subgame perfect equilibrium there (Bas$. Therefore, player 2's strategy must specify Pass for this
decision node in any SPE.
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Consider now player 1's initial decision. Since the playetsategies are such that they play the
(PassPas$ SPE in the subgame after histo($1), then player 1 does best by bidding $1 at the out-
set. Therefore{($1, Pas$, (PassPas$) is the SPE of the game under the indifference rule. The owtcom
is that player 1 bids $1 and player 2 passes. This corresprlasely to the outcome in our discussion
above.

There is a general formula, due to Barry O’Neill, that you aae to calculate the optimal size of the
first bid, which depends on the amount of money available ¢t &&dder, the size of the award, and the
amount of bid increments. Let the bidding increment be gmted by one unit (so the unit in our example
is a dime). If each player hdsunits available for bidding, and the awardusunits, the optimal bid is
((b—1) mod (v—1))+ 1. In our example, this translates@0— 1) mod (10— 1) 4+ 1 = 3 units, which
equals30 cents, just as we found.

It is interesting to note that the size of the optimal bid isyveensitive to the amount each player
has available for bidding. If each player has $2.80 instfa#3d0, then the optimal bid €8 — 1)
mod (10 — 1) + 1 = 1, or just 10 cents. If, however, each has $2.70, then the aptid is (27 — 1)
mod (10 — 1) + 1 = 9, or 90 cents.

The Dollar Auction was first described by Martin Shubik whpaged regular gains from playing the
game in large undergraduate classes. The game is a very tigmight experiment about escalation. At
the outset, both players are trying to win the prize by cosfigalation, but at some point the escalation
acquires momentum of its own and players continue payingsdosavoid paying the larger costs of
capitulating. The requirement that both highest biddeystpa cost captures the idea of escalation.

There is just one problem with using the game to explain aicat in the SPE no escalation occurs!
Whereas the cost-avoiding logic does establish the ctagibf threats off the path of play to continue
until the ultimate end (which in itself “punctuates” the yplay establishing thresholds where particular bids
must end the game immediately), this very credibility inesiplayer to avoid incurring any unnecessary
costs in the first place: the player who makes the appropndtal bid wins instantly, and benefits from
doing so.

The no-escalation SPE stands in stark contrast with expetahresults where escalation is very com-
mon, and where it often involves costs that well exceed theefiteof winning. One could argue that
players in these experiments do not understand the game attbket, and by the time they figure it out,
they are locked in the cost-avoidance phase of the game.hBydrbblem there is that usually even after
only two players are left in that phase, they keep biddin¢esd of one of them immediately hitting one
of the thresholds and winning. (This is why | had to restfig budgets to $3: | once tried the game with
$10 budgets and the players did not stop until they almosawested them.) Players do understand the
cost-avoidance logic — what they do not seem to quite setttlis the credibility of the threat to continue
the escalation once a threshold bid is made.

To me this suggests that in these experiments players maihienplaying the game as specified but
a variant of it that involves incomplete information abole tabilities or risk-propensities of the other
players. The problem is not that the players are irratiomaéiheé Nash sense but that the experimenter has
not been able to control the experiment. The intuition i tha SPE result is predicated on the threats
being credible (to all involved), and the cost-avoidanagidaestablishes the credibility to go all out at
certain bid levels. If there is a small probability that a hidt above the particular threshold would win
the auction (e.g., because the other player makes a mistakguits or because she is risk-averse and
quits instead of escalating as she should or because tremeiogenous probability of being declared the
winner), then the magnitude of the threat would matter. &, fifithe losses incurred with the previous bid
are not very high, then one might be tempted to “cross” thestiold, causing the game to escalate to the
next one threshold, where a similar problem might re-oc&8ince the costs become larger as the game
nears the end, the incentive to try one’s luck gets weaker,santhe game becomes increasingly likely
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to end at the threshold. If escalation has this property aady real-life situations probably do have it),
then one could explain escalation with the model suitabjysied®

4.2 Sophisticated Voting and Agenda Control

Suppose there are three playetss {1, 2, 3}, who must choose one from three alternatid%es= {x, y, z}.
Their preferences are as follows:

e Player 1:x > y > z;
e Player 2:y > z > x;
e Player 3:z > x > y.

They must make their choice through majority rule voting tava-stage process. They first vote on two of
the alternatives and the winner is then pitted against timair@ng alternative in the second round. Players
cast their votes simultaneously in each of the two roundpp8se player 2 controls the agenda—that is,
she can decide which two alternatives are to be voted on ifirfteound. What is her choice?

We need to find the SPE. Clearly, player 2 will set an agendaetigures thap is the winner if that's
possible. We have to consider the three possible situatidegending on which two alternatives are
selected in the first round. To find the subgame-perfect ibquiin, we have to ensure that the strategies
are optimal in all subgames. There are three generic sulsgdnaibegin with the second round: depending
on the winning alternative in the first round, the second docan involve a vote o, y), or (x, z), or
(y,z). So let's analyze each of these subgames.

Note first that because there are only two alternatives aree thlayers, it follows that in any PSNE,
at least two players must vote for the same alternative. ®&s®w that casting aincerevote—that is,
voting for the preferred alternative—is weakly dominantdach player. If the other two players vote for
different alternatives, then the third player’s vote isidiwe, and it is strictly better to cast it sincerely. If,
on the other hand, the two other players vote for the sammatiee, then the third player’s vote cannot
change the outcome. Therefore, there are two possible PSKtese subgames: either all players vote
sincerely or they all vote for the same alternative. Tedihicthis means that when is pitted against
y, itis possible to gey to win: the strategy profile in which all players vote fpiis a Nash equilibrium.
However, this PSNE requires two of the players to vote agjdiredr preferred alternative arekpect that
they do spwhich seems highly implausible. In this instance, | wouwltkrout the PSNE involving weakly
dominated strategies. Using only weakly dominant strategfien yields a unique PSNE with sincere
voting for each of the subgames, as follows:

e if (x,y), thenx wins (1 and 3 voter and 2 votey);
e if (x,z), thenz wins (2 and 3 vote and 1 votesy);
e if (,2), theny wins (1 and 2 votey and 3 voteg).?°

In other words, we know that in SPE the second round will medincere voting and produce a winner
accordingly.

19This, in fact, is the essence of the model that Bahar Levmtand | proposed to explain why wars might not be settled
immediately despite both sides having complete infornmatie in our case, if a player escalates unexpectedly, theresisadl
exogenous chance that the other player would collapse.

200f course, there are also the PSNE in which two players vateggly and the third, whose vote is irrelevant, also vates f
the same alternative. For instance(in y), there is PSNE in which all players vote for Since player 3’s choice cannot affect
the outcome, he might as well vote insincerely.
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Going back to our original question, how is player 2 to setabenda? Clearly, if is ever to emerge
as the winner given that the 2nd round will involve sinceréng it will have to be pitted there against
because againstit will lose. Sincez defeatsr in sincere voting, then perhaps choosingz) as the first
round agenda would work?

The answer is that it will not. Suppose player 2 set the ageiitia(x, z) in the first round and everyone
voted sincerely. Then the winner would beand in the second round the winner would)beBut players
can anticipate this outcome. In particular, player 3 kndved the winner of the first comparison would go
on to compete witly and if y prevails in the 2nd round, he will get his worst possiblerali¢ive. Sincey
will beat z with sincere voting, this means that he really does not wdatwin in the first round. If votes
are cast sincerely in the first round, then player 1 is votirgefwhile players 2 and 3 are voting far.
However, if player 3 deviated and cass@phisticatedvote for x instead, then will win the first round,
and in the second round the sincere vot&.ony) would leavex as the winner. Although the sophisticated
vote does not enable player 3 to get his most preferred atieen it does enable him to avoid the worst
possible oné!

This now means that whatever player 2 chooses, her agenda hasinvulnerable to sophisticated
voting. Well, as they say, if you can’t beat them, join thenhaypr 2 will exploit the sophistication of
the players by setting the agenda for the first roun¢xtg/). Observe that with sincere voting,would
defeaty. However, this would pik againstz in the 2nd round, in which casewill prevail. Player 1 can
foresee this and sinceis his worst possible alternative, he will cast a sophistidasote fory against her
preference forc over y. Doing so would ensure thatwill go on to the 2nd round and defeat which
gives him the second-best outcome. Of course, our deviayepk can now enjoy her most preferred
alternative. Therefore, the profile

(v, xy), (¥,2,¥),(x,22))

is a subgame-perfect equilibrium when, y) is the pair in the first round. The strategies are specified as
a triple over theg(x, y) choice in the first round, and then tle, z) and(y, z) possible subgames in the
second round. In this SPE player 1 is casting a sophisticaterl(note that player 2's manipulation pays
off even though she votes sincerely). Alternativelefeatsx, and then goes on to defeain a sincere
vote in the 2nd round. Since this SPE yields player 2 her nme$éped alternative, the overall SPE of the
game involves her setting the agenda such that) are the two competing alternatives in the first round.

We know from McKelvey's Chaos Theorem that if players votgsiely using majority rule to select
winners in pairwise comparisons, then any outcome is plespfovided no equilibrium position exists.
(That is, for any two alternatives, one can always find an dgehat guarantees that one beats the other.)
With sophisticated voting, this chaos is a bit reduced: foy &vo alternatives, there will be an agenda
that guarantees that one defeats the other only if the witarealso beat the loser in a majority vote with
sincere voting or there is a third alternative that can defealoser and itself be defeated by the winner in
a majority vote with sincere voting (this is due to Shepslé ®eingast). In our situatiop can beat; on
its own with sincere voting, and can beatx throughz because can defeatr in sincere voting ang in
turn defeats.. Hence, there is an agenda that ensyrésreachablé?

Agenda-setting gives player 2 the ability to impose her nposferred outcome and there is nothing
(in this instance) that the others can do. For instance eplayand player 3 cannot collude to defeat her
obvious intent. To see this, suppose player 3 proposed aalpkdyer 1: if player 1 would vote sincerely
for x in the first round, then player 3 would reward him by voting foon the 2nd round. Since will

21Here, as before, there are equilibria in which all three @layote for the same alternative and two of them vote agdimit
preferences. For instance, (v, z) this would require them all to vote for. Coupling this with any PSNE in the 2nd round will
yield an SPE, but the solution is implausible for the samearawe discussed already.

2210 our game, each of the three outcome is possible with aropppte agenda. Sophisticated voting does not reduce the
chaos.
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then beaty in the first round, player 3’s insincere vote in the seconahdowould ensure that will defeat

z as well. This would benefit both players: player 1 would gstrmbst preferred outcome and player 3
would avoid the worst outcomg and get his second-best. Unfortunately (for player 3), mmoamake a
credible promise to cast an insincere votex defeatsy in the first round, then player 3 can get his most
preferred outcome by voting sincerely (n, z) in the second round. Therefore, he would renege on his
pledge, so player 1 has no incentive to believe him. But dimisereneging would saddle player 1 with his
worst outcome, player 1 would strictly prefer to cast hishssficated vote in the first round even though
he is perfectly aware of how player 2 has manipulated thedsytmher advantage. The inability to make
credible promises, like the inability to make credible #isg can seriously hurt players. In this instance,
player 3 gets the worst of it.

4.3 The Holdup Game

Credible commitment issues crop up in various settings.st@ien the following three-stage game. Before
playing the Ultimatum Game from the previous section, pled/&€an determine the size of the pie by
exerting a small effortes > 0 resulting in a small pie of sizeg, or a large efforte;, > eg, resulting in a
larger pie of sizer;, > mg. Since player 2 hates exerting any efforts, her payoff frantaiming a share of
sizex is x — e, wheree is the amount of effort expended. The extensive form of thimgis presented in
Fig. 17 (p. 35).

X, T§ —X—es 0,—eg X,mp —Xx—er 0,—ey,
Figure 17: The Holdup Game.

We have already analyzed the Ultimatum Game, so each subtiehéollows player 2's effort has
a unique SPE where player 1 proposes= 7 and player 2 accepts all offers (note that the difference
between this version and the one we saw above is that playetis 2gstrictly negative payoff if she rejects
an offer instead of 0). So, in the subgame following player 1 offerstg and in the subgame following
ey, he offerszy,. In both cases player 2 accepts these proposals, resultipgyioffs of—eg and —ey,
respectively. Given these SPE strategies, player 2's a@ptaction at the initial node is to expend little
effort, oregs because doing so yields a strictly better payoff.

We conclude that the SPE of the Holdup Game is as follows.gPl®y strategy igns, 77.) and player
2's strategy iqegs, Y, Y), whereY means “accept all offers.” The outcome of the game is thatepl&
invests little efforteg, and player 1 obtains the entire small pig.

Note that this equilibrium does not depend on the values of; , ns, 77 as long ags < er. Even if
nrr, is much larger thamg andey, is only slightly higher thareg, player 2 would still exert little effort in
SPE although it would be better for both players if player @gede;, (remember, onlglightly larger than
es) and obtained a slice of the larger pie. The problem is thetesl 1 cannot credibly promise to give that
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slice tho player 2. Once player 2 expends the effort, she edhddd up” for the entire pie by player 1.

This result holds for similar games where the bargaining@dare yields a more equitable distribution.
If player 2 must expend more effort to generate a larger pikifaime procedure is such that some of this
surplus pie goes to the other player, then for some valuespép2’s cost of exerting this effort, she would
strictly prefer to exert little effort. Although there areamy outcomes where both players would be strictly
better off if player 2 exerted more effort, these cannot Isaéned in equilibrium because of player 1's
incentives. In the example above, player 1 would have likduktable to commit credibly to offering some
of the extra pie to induce player 2 to exert the larger effaust like the problem with non-credible threats,
the problem of non-credible promises means that this camqmben in subgame perfect equilibrium.

4.4 A Two-Stage Game with Several Static Equilibria

Promises about future behavior can be credible and usefehwle behavior involve equilibrium play.
We now look at an example of this that is also a useful intrtidndo some ideas that we shall develop at
length when we turn to repeated games next.

Consider the game corresponding to two repetitions of tiensgtric normal form game depicted in
Fig. 18 (p. 36). In the first stage of the game, the two playiensisaneously choose among their actions,
observe the outcome, and then in the second stage play tleegetene again. The payoffs are simply the
discounted average from the payoffs in each stage. That 'ysl,l Irepresent players payoff at stage 1 and
pi2 represent his payoff at stage 2. Then playspayoff from the multi-stage game ig = pi1 + Spiz,
wheres € (0, 1) is the discount factor.

Player 2
A B C
A10,0]3,4]6,0
Player1 B | 4,3 0,0 | 0,0
C|0,6]0,0]5,5

Figure 18: The Static Period Game.

If the game in Fig. 18 (p. 36) is played once, there are threghMguilibria, two asymmetric ones in
pure strategies{B, A), (A, B), and one symmetric in mixed strategies wittl) = 3/;, ando (B) = 4/7.
How do we find the MSNE? You should notice that the PSNE do natiwe C for any of the players,
so perhaps they would not play this in MSNE either? To checkrduition, suppose some player chooses
o/ (C) > 0in MSNE. Since4 weakly dominate€ for i, the only reasoi€ could be played with positive
probability is that4’s advantage is not realized; that is, the other player dabhaglaying eitherB or
C with positive probability. Thus, the other player must beating A with certainty or else player
i would never choos€ since it would be strictly dominated by, or 6*(C) > 0 = o*,(4) = 1.
But if —i is choosingA with certainty, then player has a unique best response, which is to piy
orof(B) =1 = o/(C) = 0, a contradiction. Since the game is symmetric, we can cdacthat
o/ (C) = 0 for every playeri in equilibrium. This means that we can find the MSNE by coméidethe
2 x 2 game in Fig. 19 (p. 36).

Player 2

A B

A10,0] 3,4

Player 1 B 43100

Figure 19: The Static Period Game after Some Equilibriumid¢.og
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This is now very easy to deal with. Since player 1 is willingnx, it follows that3o,(B) = 402(A)
and sinces;(B) = 1 — 02(A), this gives usi»(4) = 3/7. Analogously, we obtaitw;(A4) = 3/7 and
o01(B) = 4/7. The last thing we need to do is check that the players willwanht to useC given
the mixtures (we already know this from the argument aboug,itcdoes not hurt to recall the MSNE
requirement). It suffices to check for player 1: if he pl&yshis payoff will be O given player 2’s strategy
of playing only 4 and B with positive probability, which is strictly worse than tlegpected payoff from
eitherA or B. Hence, we do have our MSNE indeed. The payoffs in the thragilewa are(4, 3), (3, 4),
and(12/;, 12/7) respectively.

The efficient payofi5, 5) is not attainable in equilibrium with positive probabilifithe game is played
once?? It is easy to see nine SPE in the 2-period game: the stratediyegrthat simply specify strategies
that are Nash equilibrium of the stage game uncondition@hat is, take one of the three Nash equilibria
for all the subgames in the 2nd period (this is what playersldvdo no matter what they did in the first
period). Then the first period’'s behavior does not affectahé period by construction, and so one only
need to worry about profitable deviations from the strategig¢he 1st period. But playing any of the Nash
equilibria there guarantees that no such profitable deviatiould exist. Since there are 3 Nash equilibria,
there are8 x 3 = 9 unconditional SPE that can be constructed in this way. Ireradrthese is the efficient
payoff (5, 5) obtained with positive probability in any of the periods.

Since it is not possible to obtain this payoff in the 2nd paifas no Nash equilibrium would permit it),
the only possibility is that it obtains in the 1st period. Tig the strategies for the game would specify
non-Nash play in the first period. By definition, this mearat ttach player has a profitable deviation for
the period, so to remove the incentive to deviate, there m@istome negative consequences in the 2nd
period when he does deviate, and perhaps positive rewatgsdbes not. Since all SPE require Nash
behavior in the 2nd period, the different rewards and coststrbe obtainable in a Nash equilibrium of
the stage game. Looking at the 3 Nash equilibria, it is clear the PSNE A, B) and(B, A) arerewards
since they yield relatively high payoffs for the players,esas the MSNE is punishmensince it yields
relatively low payoffs.

Let is condition “cooperative” behavior in the first periodthva system of rewards and punishments in
the second. Consider the following strategy profile for the-stage game:

e Player 1: playC at the first stage. If the outcome(€, C), play B at the second stage, otherwise
playoi(A4) = 3/7,01(B) = 4/7 at the second stage;

e Player 2: playC at the first stage. If the outcome (i€, C), play A at the second stage, otherwise
playoi(A4) = 3/7,02(B) = 4/7 at the second stage.

That is, playing(C, C) in the first period is rewarded wit{iB, A) in the second period, and deviation is
punished with the MSNE. Is it subgame perfect? Since théegiies at the second stage specify playing
Nash equilibrium profiles for all possible second stages sthategies are optimal there. At the first stage
players can deviate and increase their payoffs by 1 from 5(&tBer player can choos¢). However,
doing so results in playing the mixed strategy Nash equilibrat the second stage, which lowers their
payoffs to12/; from 4 for player 1 and from 3 for player 2. Thus, player 1 wilt@eviate if:

6+ 68 (12/7) <54 8(4)
1 <6(4—12/)

§>T"he

23An outcome isefficientif it is not possible to make some player better off withoutking the other one worse off. The
outcomes with payoffg0, 0) are all inefficient, as are the outcomes with paya@ffs3) and (3, 4). Efficiency does not imply
equity, however: the outcomés, 0) and(0, 6) are also efficient.
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Similarly, player 2 will not deviate if:

6+68(12/7) <5448(3)
1 <6(3—12/4)
)

We conclude that the strategy profile specified above is assnbgperfect equilibrium i§ > 7/5. Another
cooperative SPE exists with thie, B) being the reward in the 2nd period. Both work in the same way:
players attain the non-Nash efficient outcome at stage 1rbgtning to revert to the worst possible Nash
equilibrium at stage 2. This technique will be very usefubnwlanalyzing infinitely repeated games, where
we shall see analogous results.

4.5 A Problem with Commitment

Let us look at yet another manifestation of the commitmenblam (the players being unable to make
credible promises about their own future behavior).

Two players are bargaining over the division of a benefit e <i. Consider first a single-period in-
teraction. If both players agree to some division1 — x) with x € [0, 1] being player 1’'s share, it is
implemented immediately and players obtain instantanpeuperiod payoffs

ur(x)=x and uz(x)=1-—x.

Each player can also choose to impose a solution by forcegUasice is costly, with each playépaying
¢; > 0. Moreover, the outcome is uncertain: player 1 wins with plality p € (0, 1) and loses with
probability 1 — p. Using force is a winner-take-all costly lottery, so the esied payoff is:

wy = pur() + (1= pu1(0) —c1=p—a
wy = pus(l) + (1 = p)uz(0) —c2 =1—p—ca.

We will now obtain some very general results that do not ddpamthe bargaining protocol. If using
force is always an option for each player, then neither waglae to any peaceful deal that is worse than
the expected payoff from war. Thus, peace requiresih@at) > w; for eachi € {1,2}. It will always
be possible to find such a deal whenever the sum of what plagtiis peace is at least as good as their
combined war expectations:

up(x) + uz(x) = wy + wo.

This condition is always satisfied in this model:
ui(x)+ur(x) =x+1l—-x=1>p—c1+1l—p—c2=1—(c1 +c2) = w1 + wy.

In other words, there exist deals that can satisfy both ptayghting expectations and make at least one
of them strictly better off with peace (all but two such dealake both of them better off).

Fig. 20 (p. 39) illustrates this graphically. Since playars risk-neutral, they will accept any deal that
gives them with certainty at least as much as their expecigd/] payoff from war. Thus, player 1 would
accept any divisiorx > p — c¢;, whereas player 2 would accept any divisibR- x > 1 — p — ¢, Or
X < p + c2. Clearly, then all divisions € [p — c1, p + c2] are preferable to war for both players, so
they are mutually acceptable. This is called iaegaining range and it always exists as long as > 0.
The size of the bargaining range, + c», is called thebargaining surplusand it represents what there
is to be divided peacefully after satisfying both playershimum demands (their war payoffs). Since
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Figure 20: Mutually acceptable bargains always exist.

¢; > 0, the surplus is always positive. The algebraic expressbhmve simply establishes the existence
of the bargaining range by showing that it is possible to ¢pgth players their certainty equivalents for

war. This calculation further shows you exactly where thigge is located, which means that not only is it
common knowledge that mutually acceptable deals existalsio common knowledge exactly what these
deals are.

It should be now obvious that the result also obtains if pleye risk-averse because then they would
value the certainty equivalent more than the risky war paydfich means they can be satisfied with shares
that are smaller than the certainty equivalents. That &p#rgaining range is larger with these players. It
also shows you that the result might not exist if players eeacceptant. These types of players demand
larger certain shares to compensate them for foregoinggkef the war outcome. Even if the expected
war outcomes sum up to less than the benefit, the fact thahoigacertain outcomes yields lower payoffs
means that it may well be the case that the sum of the requaadeppayoffs exceeds the benefit, and so
war would be unavoidable.

Fig. 20 (p. 39) includes a status quo distribution of the fieng € (0, 1), merely to illustrate that the
result is independent of its existence and location. Ifithithe bargaining range, € [wy, 1 —w;], then no
revision would take place because moving it in either dioectvould be detrimental to one of the players,
and since the other cannot credibly threaten war, theredMoeiino reason to agree to it. If it is not in the
bargaining range, as in Fig. 20 (p. 39), where- 1 — w5, then one of the players (in this case, player 2)
can credibly threaten war if no revision takes place, andesplayer 1 prefers any > w; to war, there is
an incentive to accommodate player 2. The division of theebewill be revised to something inside the
bargaining range, and no war would occur either.

This model establishes thmationalist puzzle of war, which goes as follows: Why would players ever
fight when mutually acceptable peaceful bargains alwayst €aind it is common knowledge what they
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are) whenever war is costlier than peaée?

Observe now that the argument establishes that the bargaiange exists but it does not tell you what
deal(s) in it players would coordinate on. This is becauseatiswer to that is dependent on the structure
of the negotiation process. For instance, if player 1 caneraatake-it-or-leave-it demand, then he will
extract the entire bargaining surplus® = p + ¢;, as we have seen happen in the Ultimatum Game. If
player 2 were to be given the proposal power, then she woukbde* = p — ¢;. In fact, any division
x € [p —c1,p + c2] could be supported with some bargaining protocol. For imtstalet the players
submit proposals simultaneously, call them € [0, 1], and if they are compatibley; + x, < 1, the
division is implemented, and if not, then war occurs. Anwatgy profile in which player 1 demands
X1 > p 4+ ¢ cannot end peacefully in equilibrium because doing so wegidttl player 2 less than her
war payoff, and she will be strictly better off submitting meompatible demand instead. Similarly, any
strategy profile where player 2 demands< p — c¢; cannot end peacefully either. All strategy profiles
with x; € [p —¢1, p + ¢2] andx, = 1 — x1, on the other hand, are equilibria. Neither player wants to
reduce their demand because doing so would still resultdcgbut yield a lower payoff. Neither player
wants to increase their demand because doing so would legal tevhich cannot improve on their payoffs
either.

Thus, the prediction about the precise war-avoiding diwislepends on the bargaining protocol. Instead
of specifying that protocol, let us derive a very generaliteatat will not depend on the protocol. We shall
derive asufficient condition for warwhich will guarantee that the game cannot end peacefulljnatter
how players bargain as long as the assumption is maintaivedeich player’s peace payoff must be at
least as large as their expected war payoff.

Consider now the same interaction over two perigdg, {1,2}, which are structurally identical. If
players agree to some distribution of the benefit #a 1, then this division is immediately implemented,
they receive instantaneous per-period payoffs from it,taedyame advances to the second period, where
they negotiatele novo(that is, irrespective of what the existing agreement igyreement ends the game
with the appropriate per-period payoffs from the (possitdy) division. The payoff for the game is the
sum of the two per-period payoffs.

If players fight in the second period, the outcome is war wégffs just like in the single-period game.

If they fight in the first period, the outcome is settled fortbperiods, so the expected war payoffs are:

Player 1: p[ui(1) +u1(1)] 4+ (1 — p)[u1(0) + u1(0)] —c1 =2p — 1
Player 2: p[uz(1) +u2(1)] + (1 — p)[u2(0) + u2(0)] — c2 = 2(1 — p) — ca.

From our argument above, we know that if players reach thenskperiod, it must always end peacefully.
The only possibility for bargaining breakdown and war mustitb the first period. With the current
specification of the model, however, war will never occuréhese it is possible to satisfy both sides’ war
expectations im = 1 as well. To see this, let; denote period:s share for player 1. We know that peace
must prevail in the second period with soig e [wy, 1 — w>].

In the first period, player 1 would prefer peaca jf(x;) +u(x3) > 2p —cy. This means that he would
accept any deal such thaf > 2p —c; —xJ. Using the definition of, the minimum that player 1 would
accept is eithep if xJ = wy, or p — (c1 + ¢2) if x3 = 1 —w». In other words, player 1's minimum
demand in the first period depends on what he expects thefpkdeal to be in the second period. Let
X, = p denote player 1'targestminimum demand, and note that it is feasible.

Turning now to player 2, she would prefer peaceajfx;) + u2(x3) > 2(1 — p) — c2. This means that
she would accept any deal such that< 2p + ¢, — xJ. The bounds of her maximum concession also

24Fearon was the first to state the puzzle in (roughly) thesestén his “Rationalist Explanations for War” in 1995, a seafin
piece that redefined research on the causes of war.

40



depend onx; and are eithep + (c1 + ¢2) if xJ = wy or p if xJ = 1 —w,. Letx; = p denote player
2’'s smallestmaximum concession, and observe that it is feasible as well.

Sincex; = X, = p — that s, the largest minimum demand that player 1 would evake does not
exceed the smallest maximum concession that player 2 wauhilling to make, and this demand is
feasible — we conclude that this interaction must end pedlgefThere are mutually acceptable deals in
the first period as well, and war would never occur in the twdgal game either.

Simply making this a dynamic problem does not, in itselfeeffthe outcome: peace must still prevalil
as long as the game remains the same over time. One thing thlat not remain the same over time,
however, is the distribution of power. Let us assume thagguld starts the game relatively powerful,
with a distribution of powerp € (0, 1), but declines before the second period interaction begissme
p € (0, p).

This changes nothing in the second period, where the warfiseg®@w; as before, and so in any SPE,
the game must end peacefully there. The new distributiorowfp, however, does affect the expected war
payoffs in the first period, where player 1 can now “lock in$ lidvantage if he chooses to fight:

w1 =2pA—Cl and ﬁ)z=2(1—ﬁ)—€2.

Player 1 would prefer peaceiifi (x1) + u1(x5) > w1, which means that he would agree to any>

2p — c1 — x;. But now we have a problem. Tisenallestminimum demand that player 1 could ever have
is when he obtains the best possible deal in the second petjog p + c». In this case, peace requires
deals such that; > 2p — p—(c1 +¢2) = X1, but this demand might not be feasible. It will be impossible
to satisfy player 1 in the first period if; > 1, or if

P+ (P—p)>1+(c1+c2).

This sufficiency conditioncan certainly be satisfied j is sufficiently large,p is sufficiently small, and

c1 + ¢ is sufficiently small. (To see this, note thatyifis close to 1 ang is closer to zero, the left-hand
side of the inequality is close to 2, and with + ¢, small enough, the right-hand side will be less than
that.) We shall callp — p) thesize of the power shiftf the power shift is sufficiently large, then it will
not be possible to satisfy player 1's war expectations irfitseperiod and war is inevitable.

The problem is manifested only for thecliningplayer 1. To see this note that ttising player 2 would
prefer peace ifi2(x1) + u2(x3) > W, which means that she would agree to any< 2p + c2 — xJ.
This is minimized atx] = p + ¢», where it reduces ta; < 2p — p. But since2p — p > 0, it follows
that there are always feasible demands that player 2 woukkdg. In other words, the problem is that
the declining player cannot be compensated enough to apeape given the disadvantages he expects in
the future because of the power shift.

The first insight of the model is that a sufficiently large powsieift can lead to a bargaining breakdown
(causing war) in the dynamic game. This is so even though wvese to consider each period separately
no fighting would occur. The breakdown happens because theéniods are linked strategically with
player 1 having the option to impose an expected war outcamédth periods before the power shift
occurs. This linkage by itself is not enough if the power tsisiinot very large. We saw this in the static
environment (the sufficiency condition cannot be satisfigél + p). More to the point, however, the size
of the power shift matters greatly, as the sufficiency cooalishows.

Having even a large power shift is, by itself, not enoughitmter the problem. To see this, what feasible
demand player 1 could have that would be satisfactory in thiedériod. Lett, denote the deal he expects
in the second period. Then he would agree to any> 2p — ¢; — X,. Such deals will exist whenever
2p —c1 — Xp < 1, 0or whenevek, > 2p —c; — 1. The problem is that player 2 cannot credibly promise
to make any such offers when the sufficiency condition holdssee this, recall that the most she would
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concede in the second periodzist ¢,. Thus, if2p —c; — 1 > p + ¢», player 1's expectations cannot be
met even with the largest concession that she would be gitbhmake. But this is merely a restatement
of the sufficiency condition, so if it is satisfied player 1 nahbe bought off.

This reveals the fundamental problem caused by the powker $hie reason the declining player cannot
be compensated for the expected power shift has to do with tlibaising player can credibly agree to
after the power shift occurs. The key to the bargaining lateak is player 1's very bad expected peaceful
outcome from bargaining in the second period. If player 2da@nedibly promise a better deal in that
period, then war could be avoided. In particular, if she dawkdibly commit to offering a 2nd-period deal
that would be worse than her expected war payoff in the seperidd, then it would be possible to satisfy
player 1 in the first period. But player 1 knows that when theosed period arrives player 2 will have no
incentive to abide by that promise: she would be better {gttang any such deals and fighting. Therefore,
the most she can credibly commit to is to relinquish evengtover her war payoffy; = 1 — w,. But
since the power shift is expected to improve her war paydfsgantially, this concession turns out to be
too small for player 1 to deter him from fighting on better term

This inability of the rising player to credibly promise sgfént future compensation to the declining
player is why the bargaining breakdown caused by a large pshitt is called thecredible commitment
problem?®

5 Critiques of Subgame Perfection

Although backward induction and subgame perfection givemelling arguments for reasonable play
in simple two-stage games of perfect information, thingsuggier once we consider games with many
players or games where each player moves several times.

First, consider a game with players that has the structure depicted in Fig. 21 (p. 42)ceSihis is a
game of perfect information, we can apply the backward itidncalgorithm. The unique equilibrium is
the profile where each player choogesnd in the outcome each player gets 2.

1 C 2 C n—1 C n C

1,...,1 1/2,...,1/2 1/n—l,...,l/n—l 1/}’!5---51/7’!
Figure 21: A Game with Many Players.

People have argued that this is unreasonable because intorget the payoff of 2, alk — 1 players
must choos& . If the probability that any player choosésis p < 1, independent of the others, then the
probability that allz — 1 will chooseC is p”~!, which can be quite small if is large even ifp itself is
very close to 1. For example, with = .999 andn = 1001, this probability is(.999)1°°0 ~ 37, and with
n = 10,001, it is barely.00005. Moreover, player 1 has to worry that player 2 might havedt@scerns
and might choosé in order to safeguard either against possible “mistakesithgr players in the future
or the possibility that player 3, having these same conc¢enight intentionally plays.

25In my formal models in IR class, you will see a more generakstent of this result, which also adds the important nuance
that the power shift must not only be large but also suffityeaipid (in the sense that players cannot negotiate intagreements
while it is taking place).
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In order for the equilibrium to work, not only must players ntake mistakes, but they also must know
that everyone else knows the payoffs, and knows that evergtse knows the payoffs, and knows that
everyone else knows that everyone else knows the payoffss@amn and so forth. This is theommon
knowledgeassumption that we've seen before. In game theory it is lysagsbumed that payoffs are
common knowledge and so we can use arbitrarily long chainarnsolutions. However, some people feel
that the longer these chains, the less compelling the ealtitiat requires them.

Another critique is that subgame perfection requires theatgrs agree on the play in a subgame even
when backward induction cannot predict the play.

0,0,0 7,10,7 7,10,7 0,0,0
Figure 22: The Coordination Problem Game.

The coordination game between player 1 and 3 has three Nadibeg: two in pure strategies with
payoffs(7, 10, 7), and one in mixed strategies with payoffs5, 5, 3.5).2° If we specify an equilibrium in
which player 1 and 3 successfully coordinate, then playeillZhooseR, and so player 1 will choosg
as well, expecting a payoff of 7. If we specify the MSNE, théaypr 2 will choosel. becauseR yields
an expected payoff of 5 (coordination will fail half of thente). Again player 1 will choos®& expecting a
payoff of 8. Thus, in all SPE of this game player 1 chooRes

Suppose, however, player 1 did not see a way to coordinateeithird stage, and hence expected a
payoff of 3.5 conditional on this stage being reached, but feared thgepwould believe that the play
in the third stage would result in coordination on an effitiequilibrium. (This is not unreasonable since
the two pure strategy Nash equilibria there are the effioaet.) If player 2 had such expectations, then
she would choos&, which means that player 1 would doat the initial node!

The problem with SPE is thatll players must expect the same Nash equilibria in all smbgs So,
while this was not a big problem for subgames with unique Naglhilibria, the critique has significant
bite in cases like the one just shown. Is such a common expect@asonable? Who knows? (It depends
on the reason the equilibrium arises in the first place, wisictot something we can say a whole lot about
yet.)

Yet another critique has to do with games where the samepfegeto move many times. It seems to
me that this is a more serious problem. Consider the gametddgn Fig. 23 (p. 44).

The backward-induction solution is that players choSs&t every information set. However, suppose
that contrary to expectations player 1 choogest the initial node. What should player 2 do? The
backward-induction solution says to playbecause player 1 will pla§ given a chance. However, player

261 this MSNE, each player choosdswith probability 1/2, as you should readily see.
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Figure 23: The Centipede Game.

1 should have played at the initial node but did not. Since player 2’s optimal bébadepends on her
beliefs about player 1's behavior in the future, how doesfehma these beliefs following a 0-probability
event? For example, if she believes that player 1 will stajh wiobability less thar?/, then she should
play C because doing so will get her at least 3, which is the bestIstaéns from stopping.

How does player 2 form these beliefs and what beliefs arensdde? There are two ways to address
this problem. First, we may introduce some payoff uncetyaamd interpret deviations from expected play
by the payoffs differing from those originally thought to tmest likely. Instead of conditioning beliefs on
probability-0 events, this approach conditions them piaytbiat are most likely given the “deviation”.

Second, we may interpret the extensive form game as inmplicitluding the possibility that players
sometimes make small “mistakes” or “trembles” whenevey tiet. If the probabilities of “trembles” are
independent across different information sets, then néemhow often past play has failed to conform to
the predictions of backward induction, a player is stilltifisd in continuing to use backward induction
for the rest of the game. There is a “trembling-hand perfeqtiilibrium due to Selten that formalizes this
idea. (This is a defense of backward induction.)

The question now becomes one of choosing between two pessiterpretations of deviations. In
Fig. 23 (p. 44), if player 2 observas, will she interpret this as a small “mistake” by player 1 oraas
signal that player 1 will choos€' if given a chance? Who knows? | am more inclined toward therlat
interpretation but your mileage may vary. To see why it makensense to treat deviations as a signal,
suppose we extend the centipede game to 40 periods and npessuwe find ourselves in period 20;
that is, both players have play€d 10 times. Is it reasonable to suppose these were all migakys
that perhaps players are trying to get closer to the endgahsenthey would get better payoffs? In
experimental settings, players usually do continue for dendithough they do tend to stop well short
of the end. One way we can think about this is that the gametigactaally capturing everything about
the players. In particular, in experiments a player may tithb rationality of the opponent (so he may
expect her to continue) or he may believe she doubts his oiiomadity (so she expects him to continue,
which in turn makes him expect her to continue as well). At etg, small doubts like this may move the
play beyond the game-stopping first choice by player 1. Th&schot mean that backward induction is
“wrong.” What it does mean is that the full information comminowledge assumptions behind it may
not be captured in experiments where real people play théigeele Game. My reaction to this is not
to abandon backward induction but to modify the model and aglat will happen if players with small
doubts about each other’s rationality play the Centipedmé&®a This is a topic for another discussion,
though.
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