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1 The Extensive Form

Any situation that we wish to represent formally would have some basic elements that will be part of its
description. Most often, we begin with a verbal description(that may be quite vague at times), and then
distill each element from it. Let’s start with a simple card game borrowed from Roger Myerson that we
saw already. To refresh our memory, here’s the game again.

EXAMPLE 1. (MYERSON’ S CARD GAME .) There are two players, labeled “player 1” and “player 2.”1 At the beginning of
this game, each player puts a dollar in a pot. Next, player 1 draws a card from a shuffled deck of cards in which half the cards are
red and half are black. Player 1 looks at his card privately and decides whether to raise or fold. If player 1 folds, then he shows
his card to player 2 and the game ends; player 1 takes the moneyin the pot if the card is red, but player 2 takes the money if the
card is black. If player 1 raises, then he adds another dollarto the pot and player 2 must decide whether meet or pass. If she
passes, the game ends and player 1 takes all the money in the pot. If she meets, she puts another dollar in the pot, and then player
1 shows his card to player 2 and the game ends; if the card is red, player 1 takes all the money in the pot, but if it is black, player
2 takes all the money.

The essential elements of a game are:

1. players: The individuals who make decisions.

2. rules of the game: Who moves when? What can they do?

3. outcomes: What do the various combinations of actions produce?

4. payoffs: What are the players’ preferences over the outcomes?

5. information : What do players know when they make decisions?

6. chance:Probability distribution over chance events, if any.

A player is a decision-maker who is participant in the game and whose goal is to choose the actions
that produce his most preferred outcomes or lotteries over outcomes. We assume thatplayers are rational:
their preference orderings are complete and transitive. Wemodel uncertainty over outcomes with lotteries,
like we’ve done before. This means that preferences can be described with utility functions and rational
players choose actions that maximize their expected utilities (that’s why we need the vNM theorem).

Let I D f1; 2; : : :g denote the set of players indexed byi . That is,i 2 I is a generic member of this set.
In our example,I D f1; 2g, the two players labeled “player 1” and “player 2.”

We representchanceevents by arandom move of nature. Nature, denoted byN , is a pseudo-player
whose actions are purely mechanical and probabilistic; that is, they determine the probability distribution
over the chance events. In our example, Nature “chooses” thecolor of the card that player 1 randomly
draws from deck. Because the number of red cards equals the number of black cards and the deck is
shuffled, the probability of the randomly chosen card being red is0:5. Fig. 1 (p. 3) shows how the random
draw by player 1 can be represented as a move by Nature.

Nature “moves” first, and so theinitial node (or the “root node”) of the game, denoted with an empty
circle, is the place where the chance event occurs. The two possible “actions” by Nature arered andblack,
which we represent with onebranch each.

Each branch then leads to adecision node(denoted with a filled circle), where player 1 gets to make
his choice between raising and folding. When player 1 gets tomove, he knows the color of the card he
has drawn. In our example, player 1 chooses whether to raise or fold under two distinct circumstances,

1We establish the following convention: odd-numbered players are male, and even-numbered players are female. For a generic
player, we shall always use the generic male pronoun.
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Figure 1: Move by Nature Determines Card Color.

depending on the color of the card. That is, he has one decision to make conditional on the card being
black, and another conditional on the card being red. In bothcases, the choices are between raising and
folding.

We need a way to represent the fact that when player 1 gets to move, he knows the color of the card
he is holding. Aninformation set for some playeri summarizes what the player knows when get gets to
move. Player 1 has two information sets, labeled “b” and “c”.At information set “b”, player 1 knows that
the card is black, and at information set “c”, he knows that the card is red. Each of these information sets
contains exactly one decision node.
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Figure 2: Move by Nature Followed by Choice by Player 1.

For each of his information sets, a player must choose what todo. Anaction (or move) for playeri is
a choice, denoted byai that playeri can make at that information set. LetAi D faig denote the set of
choices at an information set. That is, this is the set of actions from which the player must choose. The
set of actions may be different depending on the informationset. Leth denote an arbitrary information set
(we shall shortly see why this letter is appropriate). ThenAi.h/ is the set of actions available to playeri

at information seth. If the player does not get to move at information seth, thenAi .h/ D ;.
In our example, player 1 always has the same two actions regardless of the color of the card: He can

either raise, denoted byR, or fold, denoted byF . Thus,A1.b/ D fF; Rg and A1.c/ D ff; rg. We
represent the actions available at a decision node with branches emanating from that node, as shown in
Fig. 2 (p. 3). I have used upper and lower case letters to denote the actions at the different information sets
to emphasize that they are, in fact, different in the sense that although the action is the same it occurs in a
different context. That is, even thoughF andf both represent the action “fold,” the first is really “fold on
black card” and the second is “fold on red card.”

Information sets that contain only one decision node are called singletons. Here, both information sets
for player 1 are singletons. Note that we have labeled the twoinformation sets by player 1 with “1.b” and
“1.c” respectively. This is intended to convey both that player 1 gets to move and that he knows different
things at the different information sets.

A history of the game is a sequence of actions taken by the various players at their information sets.
The initial history (before the game begins) is denoted byh0 D ;. One history of the game is.black/,
that is, nature having chosen black. Another history is.black; F /, that is, nature having chosen black, and
player 1 having folded.
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More generally, we can think of the game as a sequence of stages, where all players simultaneously
choose actions from their choice setsAi.h/ (remember that these choices may be “do nothing” if the
player’s action set is empty ath). An action profile is the set of actions taken by the players at that stage.
For example,h0 is the “history” at the beginning of the game, anda0 D .a0

1; : : : ; a0
I
/ is the action profile

following h0. Thenh1 is the history identified witha0, andAi.h
1/ is the set of actions available to player

i there. Continuing iteratively in this manner, we define the history at the end stagek to be the sequence
of actions in the previous stages:

hkC1 D .a0; a1; : : : ; ak/:

We shall letK C1 denote the total number of stages in the game, noting that forsome games, we may have
K D C1. In these cases, the “outcome” of the game is the infinite history h1. Let H D fhkg denote the
set of all possible histories. Since eachhKC1 by definition describes an entire sequence of actions from
the beginning of the game to its end, we shall call it aterminal history . The setZ D fhKC1g � H of all
terminal histories is the same as the set of outcomes when thegame is played.

Returning to our example, the history.red; f / is terminal because the game ends if player 1 folds. Con-
versely, the histories.red/ and.red; r/ are not terminal because the game continues. Note that information
sets are related to histories because they summarize past play and what players know about it.

For each playeri , we specify apayoff function, ui W Z ! R. That is, a function that maps the set
of terminal histories (oroutcomes), to real numbers. In other words, we assign numeric payoffsto the
outcomes. Of course, this function must represent the preference ordering of the player over the outcomes.
Sinceh1 D .black; F / and h2 D .red; f / are both terminal histories, the player’s (Bernoulli) payoff
functions must assign numbers to these outcomes.2 Let’s assume that utilities are linear in the amount of
money received, oru.´/ D ´. Then:

u1.h1/ D u2.h2/ D �1

u1.h2/ D u2.h1/ D 1:

We list these payoffs below the terminal node associated with them. By convention, the order is determined
by the order in which players appear in the game tree, top to bottom and left to right. In our example in
Fig. 2 (p. 3), the first number is player 1’s payoff and the second number is player 2’s payoff.

If player 1 raises, player 2 gets to make a move. Thus, theR andr branches representing raising by
player 1 lead to decision nodes for player 2. She can either meet,m, or pass,p, and so each decision node
will have two branches, labeledm andp respectively, as shown in Fig. 3 (p. 5). The payoffs from the
resulting terminal histories are specified in the same manner as before.

The crucial difference between the information available to player 1 and the information available to
player 2 is that player 2, unlike player 1, does not know the color of player 1’s card although she does
observe his action (raising). In other words, when player 2 gets to move, she does not know whether
player 1’s card is red or black. The information set, denotedby “0” for player 2 thus includesboth
historiesh3 D .black; R/ andh4 D .red; r/. Because each of these histories leads to a different decision
node for player 2, we enclose them in a box (or connect them in some other way) to demonstrate that they
belong to the same information set. We say that bothh3 andh4 areconsistentwith the information set
“0”. The information set represents the fact that when player 2 gets to move, she does not know the color
of the card; she only knows what she can see—namely, that player 1 has chosen to raise.3

2Bernoulli defined the utility function over wealth, and by convention we use the termBernoulli functionto refer to payoff
functions defined over the outcomes. Von Neumann and Morgenstern moved away from this and defined theexpected utility
functionover lotteries. People sometimes call theseVon Neumann-Morgenstern Utility Functionor, simply,vNM Utility Function.
Recall that these are subjective in the sense that preferences must be given before these utilities can be derived.

3As we shall see when we analyze the game, in equilibrium player 2 may learn about the likelihood of the card’s color by using
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Figure 3: Myerson’s Card Game in Extensive Form.

Player 2’s information set is not a singleton because it contains two of her decision-nodes. Leth.x/

denote the fact that the information seth contains nodex. The information set captures the idea that the
player who is choosing an action ath is uncertain whether he is atx or at some otherx0 2 h.x/. We
require that ifx0 2 h.x/, then the same player moves atx andx0. Otherwise, players may disagree who
was supposed to move.

Information sets partition the decision-nodes such that each node belongs to exactly one information set
and no more. It is in this way that information sets are related to histories. As you can see in the example,
it is perfectly fine to have information sets with more then one decision node. However, it is impossible
for the same decision node to appear in more than one information set.

Recall that the action sets are defined in terms of information sets. That is,Ai .h/ is the set of actions
from which playeri may choose at information seth. It is essential to realize that this implies that for
all nodes in this information set, the actions available at each are the same. That is, ifx0 2 h.x/, then
Ai .x

0/ D Ai .x/. Thus, we can letAi .h/ denote the action set at information seth.
To see why this must be the case, suppose that player 2 had another option, say “punt”, at the node

reached by the historyh3 D .black; R/ that was not available after historyh4 D .red; r/. This means that
she could punt if and only if player 1 had a black card. But how would player 2 exercise this option if she
does not know the color of the card? To represent this situation, we would have to give player 2 an action
called “try to punt” and add it to both nodes in her information set. Then, if she chooses this option, she
would succeed when the card is black but fail when it is red.

Note, on the other hand, the we could easily give player 1 different actions (or numbers of actions) at
each of his nodes 1.b and 1.c because they belong to differentinformation sets. It is to emphasize this that
I label the actions differently in Fig. 3 (p. 5), with lowercase and uppercase letters, depending on the color.

The point is that if a player has two nodes with different setsof actions, then these nodes cannot belong
to the same information set. However, one can easily have different nodes with the same sets of actions
even though the nodes are not in the same information set.

This completes the extensive form representation of the card game. Note that we have specified the
players, the rules of the game (who moves when and what options they have), the outcomes in terms of

the information obtained from observing raising and knowledge of player 1’s optimal strategy. In some games, the uncertainly
will be fully resolved—even though player 2 cannot observe what is known to the opponent, she caninfer that information from
his observable behavior and knowledge that he, being intelligent and rational, is choosing his optimal strategy. Of course, player
1 knows all of that full well, so he may well try to obfuscate her inferences, just as he will do in this particular game. His optimal
strategy is to prevent this inference. Even then player 2 will be able to learn something from the fact that he’s chosen to raise.
Observe, incidentally, that unless you assume that playerspursue the best strategies to the best of their abilities, you cannot make
such inferences, and behavior becomes unintelligible. Among other things, this would imply that we simply cannot perform any
sort of meaningful analysis as social scientists.
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terminal histories, the payoffs associated with these outcomes, the information available to the players
when they move, and the probability distribution of the chance events.

1.1 Formal Definition of the Extensive Form

In most applications, the game trees would rarely be drawn, and so one must make do with the mathe-
matical description of the extensive form. It is necessary to go through this exercise to understand the
methodology of this fundamental class of games. We shall rarely, if ever, need to resort to the finer de-
tail, but the mathematical description allows us to define two important categories of games (perfect and
imperfect recall), of which we shall only study one. The following definition follows Fudenberg & Tirole
(1991).

DEFINITION 1. The extensive form of a game,� D fI; .X; �/; �.�/; A.�/; H; ug, contains the following
elements:

1. A set of players denoted byi 2 I, with I D fN; 1; 2; : : :g, with N representing the pseudo-player
Nature;

2. A tree,.X; �/, which is a finite collection of nodesx 2 X endowed with the precedence relation�,
wherex � x0 means “x is beforex0.” This relation is transitive and asymmetric, and thus constitutes
a partial order.4 This rules out cycles where the game may go from nodex to a nodex0, from x0

back tox.5 In addition, we require that each nodex has exactly one immediate predecessor, that is,
one nodex0 � x such thatx00 � x andx00 ¤ x0 impliesx0 � x00 or x00 � x0. Thus, ifx0 andx00 are
both predecessors ofx, then eitherx0 is beforex00 or x00 is beforex0.

3. A set of terminal nodes, denoted by´ 2 Z consisting of all nodes that are not predecessors of any
other node. Because each´ determines the path through the tree, it represents an outcome of the
game. The payoffs for outcomes are assigned by the Bernoullipayoff functionsui W Z ! R, and
u D .u1.�/; : : : ; uI .�// is the collection of these functions, one for each player.

4. A map� W X ! I, with the interpretation that player�.x/ moves at nodex. A function A.x/ that
denotes the set of feasible actions atx.

5. Information setsh 2 H that partition the nodes of the tree such that every node is exactly in one set.
The interpretation ofh.x/ is that information seth contains the nodex. We require that ifx0 2 h.x/,
thenA.x0/ D A.x/, and so we can letA.h/ denote the set of feasible actions at information seth.

6. A probability distribution over the set of alternatives for all chance nodes.

This definition now allows us to make several ideas very precise.

1.2 Perfect Recall

We shall require that players haveperfect recall. That is, a player never forgets information he once knew,
and each player knows the actions he has chosen previously. (As we shall see, the fact that players may
know all previous history does not force us to assume that he will take it all into account when making
decisions.) This is accomplished by requiring that:

4It is not a complete order because two nodes may not be comparable. For example, consider player 2’s information set in
Fig. 3 (p. 5): Neither of the nodes precedes the other.

5To see this, suppose we constructed a game such thatx � x0 � x. By transitivity,x � x, but this violates asymmetry.
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A) if two decision nodes are in the same information set, thenneither is a predecessor of the other; and

B) if two nodesx0 andx00 are in the same information set and one of them has a predecessor x, then the
other one has a predecessorOx (possiblyx itself) in the same information set asx and the action taken
at x that leads tox0 is the same as the action taken fromOx that leads to thex00.

The games in Fig. 4 (p. 7) illustrate some cases of imperfect recall that this requirement eliminates.

1

1

x

x0 x00

(a) The player has forgotten
which action he took

1

1

x

x0

(b) The player has forgotten
whether he moved

1 1

1
x Ox

x0 x00

(c) The player has forgotten where he
was in the game

Figure 4: Games of Imperfect Recall.

The situation in Fig. 4(a) (p. 7) is ruled out by condition Condition B because even though bothx0 and
x00 in player 1’s second information set have the same predecessor, x, the actions leading fromx to the
information set are different. The situation in Fig. 4(b) (p. 7) is ruled out by Condition A becausex andx0

are in the same information set butx is a predecessor ofx0. Finally, the situation in Fig. 4(c) (p. 7) is ruled
out by Condition B: becausex0 andx00 are in the same information set and even thoughx is a predecessor
of x0 and Ox is a predecessor ofx00, x and Ox are not in the same information set themselves.

The literature on games with imperfect recall is very small,although there are some very interesting
papers that might be worth looking at (e.g. the famous game where a drunk driver forgets whether he’s
been past an exit on the freeway). These games are still quiteexotic and their application has been of
limited usefulness. This is not to say that there are no exciting areas where these can be applied. One
interesting area of research is machine game models of repeated situations: these machines have limited
memory and since information is costly to acquire, a player may “forget” some of his past actions. This
approach has been extensively used in low-rationality models of learning (evolutionary game theory, for
example), where players look at a most recent past when forming expectations about future behavior. This
course will only deal with games of perfect recall.

1.3 Finite and Infinite Games

There are three different conceptions of finiteness buried in the definition of extensive form games. The
mathematical description can be easily extended to cover these as well.

DEFINITION 2. A finite game has (i) a finite number of players, (ii) a finite number of actions, and (iii)
finite length histories. Otherwise, the game isinfinite .
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Note that relaxing any of the three requirements results in an infinite number of nodes. Thus, a game is
finite if it has a finite number of nodes. Some examples of useful infinite games that we shall encounter
include games where players choose actions from some interval that is a subset of the real line; games
which can be repeated indefinitely; or games involving an infinite number of players (we shall see how
these games are a way to model incomplete information).

1.4 Informational Categories

We now make very precise several different informational categories. Make sure you understand the terms
because we shall use them quite a bit.

DEFINITION 3. We distinguish the following informational categories:

� A game is one ofperfect information if each information set is a singleton; otherwise it is a game
of imperfect information .

� A game is one ofcertainty if it has no moves by Nature; otherwise it is a game ofuncertainty.

� A game is one ofcomplete information if all payoff functions are common knowledge; otherwise
it is a game ofincomplete information.

� A game is one ofsymmetric information if no player has information that is different from other
players when he moves or at the terminal nodes; otherwise it is a game ofasymmetric information.

Myerson’s Card Game shown in Fig. 3 (p. 5) is a game of completebut imperfect (and asymmetric)
information that is also one of uncertainty. Games of imperfect recall are always games of imperfect
information.

We shall see games of incomplete (asymmetric) information later in the course. We shall also see how
they can be modeled (and solved) as games of imperfect information. It is worth noting that although many
games of incomplete information are also games of asymmetric information, the two concepts are not
equivalent. For example, the famous principal-agent problem has complete but asymmetric information:
both players know all payoff functions but the principal does not observe the agent’s effort, even after the
end of the game.

It is also possible to have games of incomplete but symmetricinformation. For example, a Prisoners’
Dilemma where Nature moves first and randomly assigns different payoffs to the outcomes, unknown to
either player.

2 Strategies in EFG

2.1 Pure Strategies

Playeri ’s strategy, si , is a complete rule of action that tells him which actionai 2 Ai to choose at each of
his information sets. That is, a strategy specifies what the player is going to do every time it is his turn to
move given what he knows. A player’sstrategy space(sometimes also called astrategy set), Si D fsi g,
is the set of all possible strategies.

A strategy is acomplete contingent plan of action. That is, a strategy in an extensive form game is a
plan that specifies the action chosen by the player foreveryhistory after which it is his turn to move, that
is, ateachof his information sets. This is a bit counter-intuitive because it means that the strategy must
specify moves at information sets that might never be reached because of actions specified by the player’s
strategy at earlier information sets.
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DEFINITION 4. Let � be a game in extensive form. Apure strategy for player i 2 I is a function
si W H ! A such thatsi .h/ 2 Ai .h/ for all h 2 H .

Let’s list the strategies for the two players in Myerson’s Card Game in Fig. 3 (p. 5). Player 1 has
two information sets, labeled “b” and “c”, withA1.b/ D fR; F g andA1.c/ D fr; f g, so his strategy
must specify two actions,ab 2 A1.b/ andac 2 A1.c/. We shall write his strategy as an ordered set:
s1 D .ab; ac/, with the first element denoting the action to take at information set “b” and the second
denoting the action to take at information set “c”. This gives four pure strategies for player 1:

S1 D f.R; r/; .R; f /; .F; r/; .F; f /g:

For example,.R; f / is the strategy “raise if the card is black, and fold if the card is red.”
Player 2 knows that she won’t see the color and will only get tochoose if player 1 raises, in which case

she will either have to meet or pass. There is only one information set for player 2, so her pure strategy
must simply specify the action,a0 2 A2.0/ D fm; pg, she is to take at this information set. Thus,

S2 D fm; pg:

The strategym is then “meet if player 1 raises.”

B

A

1; 1

1 d

c

�1; 1

2 F
3; 2

E

4; 0

1

Figure 5: EFG With Two Info Sets for Player 1.

Consider now the game in Fig. 5 (p. 9). It has two players,i 2 f1; 2g. The game also has seven histories:
H D f.;/; .A/; .B/; .B; c/; .B; d/; .B; d; E/; .B; d; F /g. Recall thatHi denotes the set of information
sets for playeri , and Ai .h/ denotes the set of available actions at information seth for all h 2 Hi .
At the information set;, player 1 has two actions available:A1.;/ D fA; Bg. At the information set
.B; d/, he has two actions availableA1.B; d/ D fF; Eg. Player 2 only gets to move at the information
set B, and has two actions available there:A2.B/ D fc; dg. There are four terminal histories:Z D

f.A/; .B; c/; .B; d; E/; .B; d; F /g.
Since a strategy is a complete contingent plan of action, it must specify the actions to be taken at every

information set. Player 1 has two information sets in the game, and therefore his strategy will have 2
components: an action to take at the first information set, and an action to take at the second information
set. Since in both cases he has two actions available, he has atotal of four different strategies:

S1 D f.AE/; .AF /; .BE/; .BF /g :

Player 2 has only one information set, with two actions there, and so she has only two possible strategies:

S2 D fc; dg :

This game illustrates a point that is worth emphasizing. It is extremely important to remember thata
strategy specifies the action chosen by a player forevery information set at which it is his turn to move,
even for information sets that are never reached if the strategy is followed. That is, in the game in Fig. 5
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(p. 9), the first two strategies,.AE/ and.AF / specify actions after the history.B; d/ even though they
specify actionA at the initial node (which means that when the strategy is followed, history.B; d/ will
never be realized, and the second information set will neverbe reached). In this sense, a strategy differs
from what we naturally consider a plan of action. In this instance, every-day language is misleading. We
may say that we “plan to chooseB” and since the game will end, there is no reason to plan what todo if
we playedA instead. However, here we want to know whetherB is better thanA for player 1. To decide
whether this is the case, we need to know what the consequences of choosingA are (otherwise we cannot
compare the two actions). But to evaluate the consequences of A, we need to take into account what he
would optimally do at his last information set and incorporate this into player 2’s expectations to infer what
she will do at her information set. ChoosingB can only be optimalin the context of expectations about
what would happen if the player chose actionA instead.It is because we want to find optimal strategies
that we must engage in these comparisons and it is for that reason that we must specify the full strategy in
what appears to be a redundant fashion. This will become clearer when we analyze some games later on.

A strategy profile, s D .s1; s2; : : : ; sn/, is an ordered set of strategies consisting of one strategy for
each of then players in the game. One extraordinarily useful piece of notation can let us focus on player
i ’s strategysi in the profiles. We can partition the strategy profiles as:

.si ; s�i / � s;

wheresi is playeri ’s strategy, ands�i is the set of strategies for all other players. For example, if s D

.s1; s2; s3; s4; s5/, and we specify.si ; s�i / for playeri D 3, thensi D s3, ands�i D .s1; s2; s4; s5/. Let
S D S1 � S2 � : : : � Sn denote the set of strategy profiles.

Because a strategy profile specifies what each player is goingto do at every point in the game where it
is his turn to move, it in effect describeshow the game will be played and what its outcome will be if the
players follow the strategies in the profile. In other words,each strategy profile will yield:

� one outcome if that there are no moves by chance; or

� a probability distribution over outcomes if there are movesby chance and the strategies are consistent
with information sets where Nature moves.

Some people define players’ preference orderings over strategy profiles, but I find this confusing even
though it is equivalent to defining them over outcomes. It is confusing because one may think that players
actually care about the strategies being played apart from the outcomes they produce. (If this is the case,
then this fact must be reflected in the payoffs associated with the outcomes.) We shall define them over
outcomes. A player’s payoff,ui .s/, is the expected utility that playeri receives from the outcome produced
by the strategy profiles 2 S . Thus, each playeri ’s goal in a game is to choosesi 2 Si that maximizes
ui .si ; s�i /.

2.2 Mixed Strategies in EFG

The definition of mixed strategies in EFG is exactly the same as the definition in strategic form games. To
summarize,

DEFINITION 5. A mixed strategy for playeri , denoted by�i , is a probability distribution overi ’s set of
pure strategiesSi . Denote the mixed strategy space for playeri by †i , where�i .si / is the probability that
�i assigns to the pure strategysi 2 Si . The space of mixed strategy profiles is denoted by† D 4†i .
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2.3 Behavior Strategies in EFG

Unlike strategic form games, extensive form games admit twodistinct types of randomization: a player can
either randomize over his pure strategies or he can randomize over the actions at each of his information
sets. The second type of randomizing strategy is thebehavior strategy, which specifies a probability
distribution over actions at each information set.These distributions are independent.That is, a behavior
strategy specifies the probabilities with which actions arechosen at every information set. Thus, a pure
strategy is a special kind of behavior strategy where the distribution at each information set is degenerate.

To help illustrate the difference between the two types of randomization, Luce and Raiffa (1957) offer
the following analogy: A pure strategy is a book of instructions, where each page tells how to play at a
particular information set. The space of pure strategies isa library of these books. A mixed strategy is
a probability distribution over this library (i.e. it specifies the probability with which books are chosen).
A behavior strategy is a single book where each page prescribes a random action. Thus, a player may
randomly select a pure strategy or he might plan a set of randomizations, one for every point at which he
has to take action.

An example may be helpful. Consider the game in Fig. 5 (p. 9) and recall that player 1 has four pure
strategies:.AE/, .AF /, .BE/, and.BF /. A mixed strategy is a probability distribution over these four
strategies. For example, a mixed strategy� D .1=4; 1=4; 1=4; 1=4/ specifies that player 1 will play each of his
pure strategies with equal probability of1=4. Another mixed strategy might be� D .1=3; 0; 1=6; 1=2/, which
specifies that player 1 should playAE with probability 1=3, AF with probability 0,BE with probability
1=6, andBF with probability 1=2. You can see the close correspondence with mixed strategiesin normal
form games.

On the other hand, a behavior strategy for player 1 would specify probabilities for actions at all in-
formation sets. Because player 1 has two information sets, the strategy must specify two probability
distributions, one for each information set. For example,ˇ D .1=4; 1=4/ means that player 1 will choose
A at his first information set with probability1=4 (and chooseB with complementary probability3=4), and
he will chooseE with probability 1=4 at the second information set. Another behavior strategy might be
ˇ D .0; 1=2/, which specifies that player 1 should chooseB with probability 1 at the first information set
and playE andF with equal probability at the second information set. Just like a pure strategy will have as
many elements as there are information sets at which the player must move, the behavior strategy will also
have as many elements as there are information sets. The difference is that the pure strategy will prescribe
a certain action for each information set whereas the behavior strategy prescribes a probability distribution
over the actions at this set. (Of course, the number of elements in a mixed strategy equals the number of
pure strategies.) As we noted, a pure strategy is a behavior strategy with degenerate distributions at each
information set. So, for example, the pure strategyBE is the behavior strategy̌ D .0; 1/ just as it is the
degenerate mixed strategy� D .0; 0; 1; 0/.

2.4 Equivalence of Mixed and Behavior Strategies

As you probably already suspect, the two types of randomizing strategies are closely related. We shall call
two strategiesequivalentif they induce the same probability distributions over outcomes for all strategies
of the opponents.6 Intuitively, two strategies are equivalent if they have thesame consequences regardless
of what the other players do.

6This is the same concept of equivalence we used when we discussed the reduced normal form representation of extensive
games in the previous section.
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2.4.1 Mixed Strategy Equivalent to a Behavior Strategy

Let’s see how we can generate a mixed strategy that is equivalent to some arbitrary behavior strategyˇi

for player i . Let ˇi .hi /.ai / denote the probability with which actionai 2 Ai .hi / is taken (that is the
probability with which an action is chosen from the set of actions available after historyhi ). Let si .hi /

denote the action specified by the pure strategysi at the information sethi (and sosi specifies one action
for all information sets where playeri gets to move). Define the mixed strategy�i to assign the following
probability to each pure strategysi :

�i .si / D
Y

hi 2H

ˇi .hi / .si .hi // : (1)

That is, the probability with which the pure strategy is chosen is simply the product of probabilities as-
signed by the behavior strategy to the action the pure strategy prescribes at each information set. Note that
we made use of the assumption that the behavior randomizations are independent across information sets.7

Let’s ask ourselves about the intuition behind this. Essentially, a pure strategy,si , gives a “path” of play
through the game: given what other players are doing, this strategy tellsi what to choose at each of his
information sets until the game tree reaches a terminal node. This means that�i would have to assign to
that “path” a probability that equals the probabilities with which each of its separate components is taken
by i ’s choice. Sincě i gives the probability of the action prescribed bysi for each information set, the
probability of the entire “path” is just the product of the probabilities thati picks the relevant actions that
constitute that path.

Consider the (Little Horsey) game in Fig. 5 (p. 9). A behaviorstrategy for player 1 has two elements,
a probability distribution over his two actionsfA; Bg at his first information set, and another probability
distribution over the actionsfE; F g at his second information set. Consider some fixed (possiblymixed)
strategy for player 2,�2 such that�2.d/ > 0, and consider the outcome after history.B; d; F /. Denote
this outcome bý 4. The only pure strategy for player 1 that can produce this with positive probability is
s1 D .B; F /. That is PrŒ´4js1� D �2.d/. Observe now that a (non-degenerate) behavior strategy will put
positive probabilities on bothB andF but will not choose them with certainty. Hence, the probability of
´4 will be PrŒ´4jˇ1� D ˇ1.;/.B/��2.d/�ˇ1.Bd/.F /. That is, it multiplies the probabilities it assigns to
the actions specified bys1 at each information set: PrŒ´4jˇ1� D ˇ1.;/.s1.;//��2.d/�ˇ1.Bd/.s1.Bd//,
where we note thats1 D .B; F / is, if we were to use to full definition of a pure strategy as a function
that takes an information set and returns an action, equivalent to s1.;/ D B and s1.Bd/ D F . Now,
a mixed strategy for player 1 can also produce´4 with positive probability as long as�1.BF / > 0. In
particular, since we want�1 to producé 4 with the same probability aš1, it must be the case that in that
mixed strategy the probability of player 1 choosingbothB andF at the respective information sets must
be the same under�1 as it is undeř 1. Underˇ1, we have seen that the probability of choosingB and
F is ˇ1.;/.B/ � ˇ1.Bd/.F /, which would givé 4 with probability �2.d/. Since the only way to reach
this outcome must involve playings1, the mixed strategy must assign this exact probability to that pure
strategy:�1.s1/ D ˇ.;/.s1.;//�ˇ1.Bd/.s1.B; d//, that is, exactly as in (1). The probability of reaching
´4 using�1 is also�2.d/.

Let’s now consider a specific example. To check equivalence,we first need to specify the distribution
over outcomes. The Little Horsey game in Fig. 5 (p. 9) has fouroutcomes. Let the probability dis-
tribution .´1; ´2; ´3; ´4/ denote the associated probabilities for the outcomes.1; 1/, .�1; 1/, .3; 2/, and
.4; 0/. Finally, let �2.c/ denote the probability with which player 2 choosesc and�2.d/ D 1 � �2.c/

denote the probability with which she choosesd . The behavior strategy̌ D ..1=4; 3=4/ ; .1=4; 3=4//,

7This holds for all games of perfect recall. In games of imperfect recall, it is possible to have behavior strategies that cannot
be duplicated by any mixed strategy.
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where player 1 choosesA andE with probability 1=4, induces the probability distribution over outcomes
.1=4; 3=4�2.c/; 3=16�2.d/; 9=16�2.d//. (We obtained the probabilities foŕ3 and´4 by multiplying the the
probability of each action specified by the behavior strategy by the probability that the initial action isB.
You should verify that the distribution over outcomes is valid: i.e. all probabilities sum to 1.) Now, using
our Equation 1, we can define the mixed strategy� as follows:

�.AE/ D ˇ.;/.A/ � ˇ.Bd/.E/ D 1=4 � 1=4 D 1=16

�.AF / D ˇ.;/.A/ � ˇ.Bd/.F / D 1=4 � 3=4 D 3=16

�.BE/ D ˇ.;/.B/ � ˇ.Bd/.E/ D 3=4 � 1=4 D 3=16

�.BF / D ˇ.;/.B/ � ˇ.Bd/.F / D 3=4 � 3=4 D 9=16

(We again verify that this is a valid probability distribution by noting that the probabilities all sum to
1.) Is this mixed strategy equivalent to the original behavior strategy? That is, does it induce the same
probability over outcomes regardless of what the other player does? The probability of outcome´1 equals
the probability that player 1 choosesA, which he does in two of his strategies, and so it is�.AE/ C

�.AF / D 1=4. The probability of́ 2 is the probability that player 1 will chooseB, which is�.BE/ C

�.BF / D 3=4, multiplied by the probability that player 2 choosesc. This yields3=4�2.c/. The probability
of ´3 is the probability that player 1 chooses bothB andE multiplied by the probability that player 2
choosesd , which yields�.BE/�2.d/ D 3=16�2.d/. Finally, the probability of́ 4 is the probability that
player 1 chooses bothB andF , �.BF /, multiplied by the probability that player 2 choosesd , which yields
9=16�2.d/. To summarize, the probability distribution over outcomesinduced by the mixed strategy� as
defined above is.1=4; 3=4�2.c/; 3=16�2.d/; 9=16�2.d//, which is the same as the probability distribution
induced by the behavior strategy̌. We have now seen how to generate an equivalent mixed strategy from
an arbitrary behavior strategy. But there is more to equivalence than this!

2.4.2 Equivalence Theorem

An important result is that in a game of perfect recall, mixedand behavior strategies are equivalent.

THEOREM 1 (KUHN 1953). In a game of perfect recall,

� every behavior strategy is equivalent to every mixed strategy that generates it;

� every mixed strategy is equivalent to the unique behavior strategy it generates. ✷

That is, different mixed strategies can generate the same behavior strategy even though each mixed
strategy either generates exactly one behavior strategy orelse infinitely many behavior strategies. To make
this a bit more concrete, two different mixed strategies cangenerate the same behavior strategy (we shall
see an example below). The first part of the claim is that this behavior strategy is going to be equivalent
to each of the two different mixed strategies that generate it. The two mixed strategies arebehaviorally
equivalent.

Further, every mixed strategy has at least one behavioral representation, and it may have many. It may
have many if there are information sets that the mixed strategy does not reach with positive probability: In
this case it does not matter what probability distribution the behavior strategy specifies for that information
set. If, however, the mixed strategy reaches all information sets with positive probability, then it will
generate a unique behavior strategy. The second part of the claim states the these will be equivalent.

Finally, note that we can generate a mixed strategy�i from a behavior strategy̌i as shown above in
(1). In this case,�i is the mixed representation of̌i , and they are equivalent. Further, it is not hard to
show that if�i is the mixed representation ofˇi , thenˇi is the behavioral representation of�i .
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To see how the theorem works, let’s derive a behavior strategy for some given mixed strategy. Let�i be
a mixed strategy for playeri . For any historyhi , let Ri .hi / denote the set of playeri ’s pure strategies that
are consistent withhi . That is, for allsi 2 Ri .hi /, there is a profiles�i for the other players that reaches
hi . We shall call the strategies inRi .hi / consistentwith the historyhi . For example, in the Little Horsey
game from Fig. 5 (p. 9), all four pure strategies for player 1 are consistent with his first information set,
; for the simple reason that the initial information set is always reached regardless of what players are
going to do from that point on. On the other hand, the information set.Bd/ can only be reached for some
strategy by player 2 (in this case,d ) provided player 1 choosesB at his first information set. There are
only two pure strategies that involve such a choice:.BE/ and.BF /. Therefore,R1.Bd/ D fBE; BF g,
and neitherAE nor AF is consistent with the historyBd .

Now let �i .hi / be the sum of probabilities according to�i of all the pure strategies that are consistent
with hi :

�i .hi / D
X

si 2Ri .hi /

�i .si /:

Intuitively, this is the probability with which the game will reachhi providedi (and the other players)
choose actions consistent with this history. It answers thequestion: “Suppose all other players use pure
strategies that are on the path towardhi . What is the probability of reachinghi if player i uses�i?” In our
example,�1.;/ D �1.AE/ C �1.AF / C �1.BE/ C �1.BF / D 1, and�1.Bd/ D �1.BE/ C �1.BF /. In
either case, we are supposing that player 2 is choosingd in the sense that she is not playing a strategy that
would make reachingBd impossible no matter what player 1 does.

Let �.hi ; ai / denote the sum of probabilities according to�i of all pure strategies that are consistent
with hi followed by actionai 2 Ai .hi /. So we have

�i .hi ; ai / D
X

si 2Ri .hi /^si .hi /Dai

�i .si /:

Intuitively, this is very similar to�i .hi / except that it asks “What is the probability of reachinghi and
choosingai at that information set?” (Again, provided the other players use strategies that do not preclude
reaching that point in the game.) In our example,�1.;; A/ D �1.AE/ C �1.AF / because each ofAE

andAF is both consistent with the initial history; and prescribesA as the action at that set. Similarly,
�1.;; B/ D �1.BE/ C �1.BF /. At the second information set, we have�1.Bd; E/ D �1.BE/ because
even though bothBE andBF are consistent with this history, onlyBE involves choosingE at the second
information set. Analogously,�1.Bd; F / D �1.BF /.

We now have the two components we need. Observe that�i .hi ; ai / is the probability of reachinghi and
playing ai . However, to defině .hi /.ai /, we need to find the probability of playingai providedhi has
been reached. This requires us to condition�i .hi ; ai / on the probability of reachinghi , which is�i .hi /.
If �i assigns positive probability to somesi 2 Ri .hi /, define the probability that the behavior strategyˇi

assigns toai 2 Ai .hi / as the probability of taking actionai conditional on reaching the information set
hi :

ˇi .hi /.ai/ D
�i .hi ; ai /

�i .hi /
:

Intuitively, the probability of pickingai at the information sethi is the probability of reachinghi and
pickingai conditioned on the probability of reachinghi . In our example,̌ 1.;/.A/ D �1.AE/ C �1.AF /

andˇ1.;; B/ D �1.BE/ C �1.BF /. At the second information set,

ˇ1.Bd; E/ D
�1.BE/

�1.BE/ C �.BF /
I
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that is, the probability the behavior strategy must assign to the actionE is the probability�1 assigns to it
conditional on reaching this information set if�1 is followed. Finally,

ˇ1.Bd; F / D
�1.BF /

�1.BE/ C �1.BF /
:

How we defineˇi .hi /.ai / if �i .hi / D 0 is immaterial.8 One possible specification is to assign the
probabilities given by the mixed strategy:ˇi .hi /.ai / D

P

si .hi /Dai
�i.si /, but anything will do. In either

case, thě i .�/.�/ are nonnegative, and
X

ai 2Ai .hi /

ˇi .hi /.ai/ D 1;

because eachsi specifies an action for playeri at the information sethi . In other words,̌ i specifies a
valid distribution for each information sethi . If �i .hi / > 0 for all histories, then the mixed strategy will
generate a unique behavior strategy.

Let’s look at concrete example. Consider the game in Fig. 6 (p. 15). We want to find the behavior
strategy for player 1 that is equivalent to his mixed strategy in which he plays.B; R/ with probability0:4,
.B; L/ with probability0:1, and.A; L/ with probability0:5.

B

´6

A

1

DU

´1

M

2

R

´3

L

´2

R

´5

L

´4

1

Figure 6: A Game for Kuhn’s Theorem, I.

We have�1.B; R/ D 0:4, �1.B; L/ D 0:1, �1.A; L/ D 0:5, and (since the mixed strategy is a probabil-
ity distribution),�1.A; R/ D 0. Player 1 has two information sets: one after the; history, and another after
the histories.A; M / and.A; D/. The behavior strategy will thus specify two probability distributions, one
for each information set.

Sinceh1 D ; is the initial history, all pure strategies are consistent with it. (This is trivially true: there
is no pure strategy for playeri such that this history cannot be reached.) Thus,

R1.h1/ D f.A; L/; .A; R/; .B; L/; .B; R/g;

which also means�1.h1/ D 1. Since there are two possible actions player 1 can take ath1, we must
calculate�1.h1; A/ and�1.h1; B/. There are two pure strategiess1 such thats1 2 R1.h1/ ^ s1.h1/ D A,
and these are.A; L/ and.A; R/. Therefore,�1.h1; A/ D �1.A; L/ C �1.A; R/ D 0:5. Also, there are

8Sincehi cannot be reached under�i , the behavior strategies athi are arbitrary in the same sense that Bayes’ Rule does not
determine posterior probabilities after 0-probability events.
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two pure strategies such thats1 2 R1.h1/ ^ s1.h1/ D B, and these are.B; L/ and.B; L/. This means
�1.h1; B/ D �1.B; L/ C �1.B; R/ D 0:5. We now havě 1.h1/.A/ D �1.h1; A/=�1.h1/ D 0:5=1 D 0:5

and alsǒ 1.h1/.B/ D �1.h1; B/=�1.h1/ D 0:5.9 So,ˇ1.h1/.A/ D ˇ1.h1/.B/ D 0:5.
Now considerh2 D f.A; M /; .A; D/g. The only pure strategies for player 1 that are consistent with

this history are the ones that specifyA for the move at the first information set. (That is, there exists no
strategy for player 2 such thath2 is reached if player 1 choosesB at the first information set.) Therefore,
R1.h2/ D f.A; L/; .A; R/g, which means that�1.h2/ D �1.A; L/ C �1.A; R/ D 0:5. Since player 1
has two possible actions ath2, we must also calculate�1.h2; L/ and�1.h2; R/. There is only one pure
strategy such thats1 2 R1.h2/ ^ s1.h2/ D L, and it is.A; L/. Therefore,�1.h2; L/ D �1.A; L/ D 0:5.
Also, there is only one pure strategy such thats1 2 R1.h2/ ^ s1.h2/ D R, and it is.A; R/, which means
�1.h2; R/ D �1.A; R/ D 0. We now havě 1.h2/.L/ D �1.h2; L/=�1.h2/ D 0:5=0:5 D 1, and we also
haveˇ1.h2/.R/ D �1.h2; R/=�1.h2/ D 0=0:5 D 0.10

We conclude that the mixed strategy�1 has an equivalent behavior strategyˇ1, which is as follows:

ˇ1.h1/.A/ D 0:5

ˇ1.h1/.B/ D 0:5

ˇ1.h2/.L/ D 1

ˇ1.h2/.R/ D 0

Let’s check the equivalence claim. Let�2 denote a mixed strategy for player 2. Using the mixed strategy
�1, the probabilities of reaching the outcomes are as follows:

´1 W Œ�1.A; L/ C �1.A; R/��2.U / D 0:5�2.U /

´2 W �1.A; L/�2.M / D 0:5�2.M /

´3 W �1.A; R/�2.M / D 0

´4 W �1.A; L/�2.D/ D 0:5�2.D/

´5 W �1.A; R/�2.D/ D 0

´6 W �1.B; L/ C �1.B; R/ D 0:5

The distribution over outcomes using�1 is then.0:5�2.U /; 0:5�2.M /; 0; 0:5�2.D/; 0; 0:5/.
Using the behavior strategy̌1, the probabilities of reaching the outcomes are as follows.

´1 W ˇ1.h1/.A/�2.U / D 0:5�2.U /

´2 W ˇ1.h1/.A/�2.M /ˇ1.h2/.L/ D .0:5/�2.M /.1/ D 0:5�2.M /

´3 W ˇ1.h1/.A/�2.M /ˇ1.h2/.R/ D .0:5/�2.M /.0/ D 0

´4 W ˇ1.h1/.A/�2.D/ˇ1.h2/.L/ D .0:5/�2.D/.1/ D 0:5�2.D/

´5 W ˇ1.h1/.A/�2.D/ˇ1.h2/.R/ D .0:5/�2.D/.0/ D 0

´6 W ˇ1.h1/.B/ D 0:5

This yields the distribution over outcomes.0:5�2.U /; 0:5�2.M /; 0; 0:5�2.D/; 0; 0:5/ that is the same as
the one given by the mixed strategy. Therefore, we have shownthat�1 andˇ1 are equivalent.

9We verify thatˇ1.h1/.A/ D 1 � ˇ.h1/.B/, which is indeed the case.
10We again verify that the distribution is valid, which it is becausě 1.h2/.L/ C ˇ1.h2/.R/ D 1.
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2.4.3 A Mixed Strategy Can Generate Many Behavior Strategies

Now let’s illustrate the claim that a mixed strategy may generate more than one behavior strategy. Con-
sider the same game and suppose�1.A; L/ D �1.A; R/ D 0, �1.B; L/ D 0:5; and�1.B; R/ D 0:5.
As before, we haveR1.h1/ D f.A; L/; .A; R/; .B; L/; .B; R/g, and �1.h1/ D 1. Further, we have
�1.h1; A/ D 0 (because the mixed strategy assigns probability zero to allpure strategies withs1.h1/ D A),
and�1.h1; B/ D 1. Thus, we geť 1.h1/.A/ D 0 andˇ1.h1/.B/ D 1.

We now have to specify the probability distribution for the information seth2 D f.A; M /; .A; D/g. Note
thatR1.h2/ D f.A; L/; .A; R/g and�1.h2/ D 0. Further,�1.h2; L/ D �1.A; L/ D 0 and�1.h2; R/ D

�1.A; R/ D 0. Hence, we cannot use the conditional formula to defineˇ1.h2/.L/. As noted before, in
this case we could use any probability distribution, so let’s sayˇ1.h2/.L/ D x andˇ1.h2/.R/ D 1 � x,
with x 2 Œ0; 1�. Clearly, there is an infinite number of possible specifications here.

Let’s check equivalence. Under the mixed strategy, the probability distribution over outcomes is:

´1 W Œ�1.A; L/ C �1.A; R/��2.U / D 0

´2 W �1.A; L/�2.M / D 0

´3 W �1.A; R/�2.M / D 0

´4 W �1.A; L/�2.D/ D 0

´5 W �1.A; R/�2.D/ D 0

´6 W �1.B; L/ C �1.B; R/ D 1:

Under the behavior strategy, the probability distributionis:

´1 W ˇ1.h1/.A/�2.U / D 0

´2 W ˇ1.h1/.A/�2.M /ˇ1.h2/.L/ D .0/�2.M /x D 0

´3 W ˇ1.h1/.A/�2.M /ˇ1.h2/.R/ D .0/�2.M /.1 � x/ D 0

´4 W ˇ1.h1/.A/�2.D/ˇ1.h2/.L/ D .0/�2.D/x D 0

´5 W ˇ1.h1/.A/�2.D/ˇ1.h2/.R/ D .0/�2.D/.1 � x/ D 0

´6 W ˇ1.h1/.B/ D 1:

That is, the two distributions are the same. Note that this holds for any value ofx we might have chosen.
Thus, one mixed strategy can generate more than one behaviorstrategy. It should be obvious, however,
that if the mixed strategy reaches all information sets withpositive probability, then it must necessarily
generate a unique behavior strategy. Hence, a mixed strategy either generates a unique behavior strategy
or else generates an infinite number of behavior strategies.

2.4.4 Different Mixed Strategies Can Generate the Same Behavior Strategy

Now let’s illustrate the claim that different mixed strategies can generate the same behavioral strategy.
Consider the game in Fig. 7 (p. 18). Leth1 denote the history following actionU by player 1, leth2

denote the history followingD. Since there are two information sets, with two actions at each, player 2
has four pure strategies:.A; C /, .A; D/, .B; C /, and.B; D/.

Now consider two mixed strategies�2 D .1=4; 1=4; 1=4; 1=4/ and O�2 D .1=2; 0; 0; 1=2/. Both of these gen-
erate the behavior strategy̌2, whereˇ2.h1/.A/ D ˇ2.h1/.B/ D 1=2 andˇ2.h2/.C / D ˇ2.h2/.D/ D
1=2.11 To see that�2, O�2, andˇ2 are equivalent, note that they all yield the same distribution over the termi-
nal nodes for any arbitrary mixed strategy for player 1. For example, the probability of reachinǵ1 equals

11You should verify this. In our notation,R2.h1/ D R2.h2/ D fAC; AD; BC; BDg. That is, all strategies for player
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Figure 7: A Game for Kuhn’s Theorem, II.

�1.U /=2 regardless of whether we calculate it under�2, where it equals�1.U /Œ�2.A; C / C �2.A; D/�, or
underO�2, where it equals�1.U /Œ O�2.A; C /C O�2.A; D/�, or undeř 2, where it equals�1.U /ˇ2.h1/.A/. As
you probably already see, there will be an infinite number of mixed strategies that generate this behavior
strategy: All�2 such that�2.A; C / C �2.A; D/ D 1=2 and�2.A; C / C �2.B; C / D 1=2 will do that.

Although it is important to distinguish between the two types of probabilistic strategies, in practice we
shall use behavior strategies throughout the rest of this class. Because it is cumbersome to refer to them as
such all the time, whenever we refer to a mixed strategy of an extensive form game, we shall always mean
a behavior strategy (unless explicitly noted otherwise). To this end, we shall also retain our� -notation
for mixed strategies: Let�i .ai jhi / denote the probability with which playeri chooses actionai at the
information sethi .

3 Nash Equilibrium in EFG

We already know how to solve strategic form games and we also know how to convert extensive form to
strategic form as well. The solution concept we now define ignores the sequential nature of the extensive
form and treats strategies as choices to be made by players before all play begins (i.e. just like in strategic
games).

DEFINITION 6. A Nash equilibrium of a finite extensive-form game� is a Nash equilibrium of the
reduced normal form gameG derived from�.

We can do this because the finite extensive form game has a finite strategic form. More generally
though, a Nash equilibrium of an extensive form game is a strategy profile.s�

i ; s�

�i / such thatui .s
�

i ; s�

�i / �

ui .si ; s�

�i / for each playeri and allsi 2 Si . That is, the definition of Nash equilibrium is the same as for
strategic games (but be careful how you specify the strategies here).

Finding the Nash equilibria of extensive form games thus boils down to finding Nash equilibria of their
reduced normal form representations. We have already done this with Myerson’s card game, reproduced
in Fig. 8 (p. 19).

2 are consistent with these histories. This is trivially true because she has no move to determine which of these histo-
ries is reached. We then calculate the probability associated with each history, which, given that all strategies are consis-
tent with it, is simply�2.h1/ D

P

s22R2.h1/ �2.s2/ D 1. Next, we calculate the probability of taking actionA after
h1: �.h1; A/ D

P

s22R2.h1/^s2.h1/DA �2.s2/ D �2.AC / C �2.AD/ D 0:5. Finally, we calculate the behavior strategy
ˇ2.h1/.A/ D �2.h1; A/=�2.h1/ D .0:5/=.1/ D 0:5. We can generate the other strategy in a similar way.
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Figure 8: Myerson’s Card Game in Extensive Form.

Recall that the mixed strategy Nash equilibrium of this gameis:
��

1

3
ŒR; r�;

2

3
ŒF; r�

�

;

�

2

3
Œm�;

1

3
Œp�

��

:

If we want to express this in terms of behavior strategies, wewould need to specify the probability distri-
butions for the information sets. Player 1 has two information sets,b following the black card, andc fol-
lowing the red card. The probability distributions are.2=3ŒF �; 1=3ŒR�/ at information setb, and.0Œf �; 1Œr�/

at information setc. In other words, if player 1 sees the black (losing) card, he folds with probability2/3.
If he sees the red (winning) card, he always raises. Player 2’s behavior strategy is specified above (she has
only one information set).

Because in games of perfect recall mixed and behavior strategies are equivalent (Kuhn’s Theorem), we
can conclude that a Nash equilibrium in behavior strategiesmust always exist in these games. This follows
directly from Nash’s Theorem. Hence, we have the following important result:

THEOREM 2. For any extensive-form game� with perfect recall, a Nash equilibrium in behavior strate-
gies exists. ✷

3.1 The Problem of Counterfactuals

Generally, the first step to solving an extensive-form game is to find all of its Nash equilibria. The theorem
tells us at least one such equilibrium will exist. We furthermore know that if we find the Nash equilibria
of the reduced normal form representation, we would find all equilibria for the extensive form. Hence, the
usual procedure is to convert the extensive-form game to strategic form, and find its equilibria.

Some of these equilibria would have important drawbacks because they ignore the dynamic nature of
the extensive-form. This should not be surprising: after all, we obtained the strategic form representation
by removing the element of timing of moves completely. Reinchard Selten was the first to argue that some
Nash equilibria are “more reasonable” than others in his 1965 article. He used the example in Fig. 9 (p. 20)
to motivate the discussion, and so will we.

The strategic form representation has two pure-strategy Nash equilibria,hD; Li and hU; Ri.12 Look
closely at the Nash equilibrium.U; R/ and what it implies for the extensive form. In the profile.U; R/,

12What about mixed strategies? Suppose player 1 randomizes, in which case player 2’s best response isL. But if this is the
case, player 1 would be unwilling to randomize and would chooseD instead. So it cannot be the case that player 1 mixes in
equilibrium. What if player 2 mixes? Letq denote the probability of choosingL. Player 1’s expected payoff fromU is then
2q C 2.1 � q/ D 2, and his expected payoff fromD is 3q. He would chooseU if 2 � 3q, or 2=3 � q, otherwise he would choose
D. Player 2 cannot mix with1 > q > 2=3 in equilibrium because she has a unique best response toD. Therefore, she must be
mixing with 0 � q � 2=3. For any suchq, player 1 would playU . So, there is a continuum of mixed-strategy Nash equilibria,
where player 1 choosesU , and player 2 mixes with probabilityq � 2=3. These have the same problem ashU; Ri.
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Figure 9: Selten’s Example.

player 2’s information set is never reached, and she loses nothing by playingR there. But there is some-
thing “wrong” with this equilibrium: if player 2’s information set is ever reached, then she would be
strictly better off by choosingL instead ofR. In effect, player 2 is threatening player 1 with an action that
would not be in her own interest to carry out. Now player 2 doesthis in order to induce player 1 to choose
U at the initial node thereby yielding her the highest payoff of 2. But this threat is not credible because
given the chance, player 2 will always playL, and therefore this is how player 1 would expect her to play
if he choosesD. Consequently, player 1 would chooseD and player 2 would chooseL, which of course
is the other Nash equilibriumhD; Li.

The Nash equilibriumhU; Ri is not plausible because it relies on an incredible threat (that is, it relies
on an action which would not be in the interest of the player tocarry out). In fact, none of the MSNE will
be plausible for that very reason either. According to our motivation for studying extensive form games,
we are interested in sequencing of moves presumably becauseplayers get to reassess their plans of actions
in light of past moves by other players (and themselves). That is, nonterminal histories represent points at
which such reassessment may occur. The only acceptable solution should be the PSNEhD; Li.

The following definition is very important for the discussion that follows. It helps distinguish between
actions that would be taken if the equilibrium strategies are implemented and those that should not.

DEFINITION 7. Given any behavior strategy profile� , and information set is said to beon the path of
play if, and only if, the information set is reached with positiveprobability according to� . If � is an
equilibrium strategy profile, then we refer to theequilibrium path of play.

To anticipate a bit of what follows, the problem with thehU; Ri solution is that it specifies the incredible
action at an information set that is off the equilibrium pathof play. Player 2’s information set is never
reached if player 1 choosesU (it is a counterfactual). Consequently, Nash equilibrium cannot pin down
the optimality of the action at that information set. The problem will not extend to strategy profiles which
visit all information sets with positive probability. The reason for this is that if the Nash equilibrium profile
reaches all information sets with positive probability, then it will also reach all outcomes with positive
probability. But if it does so, the fact that no player can profit by deviating from his Nash strategy implies
that there would exist no information set where he would wantto deviate. In other words, his actions at
all information sets are credible. If, on the other hand, theNash strategies leave some information sets
off the path of play, then the Nash requirement has no bite: whatever the player does at these information
sets is “irrelevant” as it cannot affect his payoffs. It is under these circumstances that he may be picking
an action that he would not never choose if the information set is actually reached. Notice that unlike
hU; Ri, the other PSNEhD; Li does reach all information sets with positive probability.In this case,
Nash’s requirement is sufficient to establish optimality ofthe strategies everywhere. As we shall see, our
solutions will always be Nash equilibria. It’s just that notall Nash equilibria will be reasonable.

It is worth emphasizing that the problem is in scenarios thatdo not arise when the strategies are fol-
lowed. The problem is especially acute when the cause of these strategies being optimal is incredible
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behavior in counterfactual scenarios. The definition of rationality that requires mutual best responses on
the path of play only (Nash equilibrium) cannot pin down improbable counterfactuals that rationalize that
behavior. We shall, therefore, strengthen the definition ofrationality to require that behavior in counter-
factual scenarios (contingencies that do not arise when thestrategies are followed) is rational in the Nash
sense.

3.2 Backward Induction

Consider any game of complete and perfect information (thatis, a game where all information sets are
singletons). Such a game can be solved bybackward induction, a technique which involves starting from
the last stage of the game, determining the last mover’s bestaction at his information set there, and then
replacing the information set with the payoffs from the outcome that the optimal action would produce.
Continuing in this way, we work upwards through the tree until we reach the first mover’s choice at the
initial node.

In 1913 Zermelo proved that chess has an optimal solution. Hereasoned as follows. Since chess is a
finite game (it has quite a few moves, but they are not infinite), this means that it has a set of penultimate
nodes. That is, nodes whose immediate successors are terminal nodes. The optimal strategy specifies that
the player who can move at each of these nodes chooses the movethat yields him the highest payoff (in
case of a tie he makes an arbitrary selection). Now, the optimal strategies specify that the player who moves
at the nodes whose immediate successors are the penultimatenodes chooses the action which maximizes
his payoff over the feasible successors given that the otherplayer moves there in the way we just specified.
We continue doing so until we reach the beginning of the tree.When we are done, we will have specified
an optimal strategy for each player.

These strategies constitute a Nash equilibrium because each player’s strategy is optimal given the other
player’s strategy. (In fact, these strategies also meet thestronger requirements of subgame perfection,
which we shall examine in the next section. Kuhn’s paper provides a proof that any finite extensive form
game has an equilibrium in pure strategies. It was also in this paper that he distinguished between mixed
and behavior strategies for extensive form games.) Hence the following result:

THEOREM 3 (ZERMELO 1913; KUHN 1953). A finite game of perfect information has a pure strategy
Nash equilibrium. ✷

It is important to realize that this technique ensures Nash behavior in all possible contingencies, includ-
ing the counterfactuals that do not arise when the optimal strategies are followed. Since Selten’s game
in Fig. 9 (p. 20) is one of complete and perfect information, we can apply backward induction to find an
equilibrium with this feature as well. At her information set, player 2 would chooseL. This reduces player
1’s choices betweenD (which, given player 2’s strategy would yield 3) andU , which yields 2. Therefore,
player 1 would chooseD. The equilibrium with Nash behavior everywhere ishD; Li.

Kuhn’s theorem makes no claims about uniqueness of the equilibrium. However, it should be clear that
if no player is indifferent between any two outcomes, then the equilibrium will be unique. Note that all
equilibria computed with backward induction are Nash equilibria. (The converse, of course, is not true:
the whole point of this exercise is to eliminate Nash equilibria that seem implausible.)

3.3 A Crisis Escalation Game

Consider the game of complete and perfect information shownin Fig. 10 (p. 22).
What are the Nash equilibria of this game? As usual, we convert this to strategic form, as shown above.

(We shall keep the non-reduced version to illustrate a point.) The Nash equilibria in pure strategies are
h.�e; a/; ri, h.�e; �a/; ri, andh.e; a/; �ri, and two of them are suspect.
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Figure 10: Basic Escalation Game.

The problem with the Nash equilibrium profilesh.�e; a/; ri and h.e; a/; �ri is that they leave infor-
mation sets off the equilibrium path of play and so Nash optimality cannot pin down behavior at sets that
are never reached. For example,h.e; a/; �ri leaves player 1’s second information set off the path of play,
which causes the strategy to miss the fact thata is not rational at that set. This incredible threat rationalizes
player 2’s choice of�r causing her to take an action that leaves this information set off the path. Similarly,
h.�e; a/; ri leaves both player 1’s second information set and player 2’sinformation set off the path of
play and causes the strategies to miss two problems: player 1’s choice ofa is not rational at his second
information set, and given that choice, player 2’s choice ofr is not rational either! In other words, since
the equilibrium path of play does not realize some contingencies, Nash cannot pin down optimal behavior
there.

Applying backward induction leaves onlyh.�e; �a/; ri as the equilibrium, as illustrated in Fig. 11
(p. 22). This eliminates two of the pure-strategy Nash equilibria, and demonstrates why it is extremely
important that strategies specify moves even at information sets that would not be reached if the strategy
is followed.
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Figure 11: Backward Induction in the Escalation Game.

The only reason why� e is rational at player 1’s first information set is because player 2’s rational
strategy prescribesr , which in turn is only rational because she expects player 1 to choose�a at his last
information set, where this is the rational choice. In otherwords, the optimality of player 1’s initial action
depends on the optimality of his action at his second information set. This is precisely why we cannot
determine optimality of strategies unless they specify what to do for all information sets. Note that in this
case, the second information set is not reached if the strategy .�e; �a/ is followed, but we still need to
know the action there.

3.4 The Ultimatum Game

Two players want to split a pie of size� > 0. Player 1 offers a divisionx 2 Œ0; �� according to which his
share isx and player 2’s share is� � x. If player 2 accepts this offer, the pie is divided accordingly. If
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player 2 rejects this offer, neither player receives anything. The extensive form of this game is represented
in Fig. 12 (p. 23).

�0
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✄

Figure 12: The Ultimatum Game.

In this game, player 1 has a continuum of action available at the initial node, while player 2 has only
two actions. (The continuum of actions ranging from offering 0 to offering the entire pie is represented
by the dotted curve connecting the two extremes.) When player 1 makes some offer, player 2 can only
accept or reject it. There is an infinite number of histories following a history of length 1 (i.e. following
a proposal by player 1). Each history is uniquely identified by the proposal,x. After all histories with
x < � , player 2’s optimal action is to accept because doing so yields a strictly positive payoff which is
higher than 0, which is what she would get by rejecting. Afterthe historyx D � , however, player 2
is indifferent between accepting and rejecting. So by backward induction, 2’s strategy must be to either
accept all offers (includingx D �) or to accept all offersx < � but to rejectx D � .

Consider player 1’s optimal strategy, which depends on which of player 2’s optimal strategies she is
supposed to follow. If player 2 accepts all offers, then player 1’s optimal offer isx D � because this yields
the highest payoff. If player 2 rejectsx D � but accepts all other offers,there is no optimal offer for
player 1! To see this, suppose player 1 offered somex < � , which player 2 accepts. But because player
2 accepts allx < � , player 1 can improve his payoff by offering somex0 such thatx < x0 < � , which
player 2 will also accept but which yields player 1 a strictlybetter payoff.

Therefore, the ultimatum game has a unique equilibrium obtained by backward indiction, in which
player 1 offersx D � and player 2 accepts all offers. The outcome is that player 1 gets to keep the entire
pie, while player 2’s payoff is zero.

This one-sided result comes for two reasons. First, player 2is not allowed to make any counteroffers.
If we relaxed this assumption, as we shall do next, the equilibrium will generally be different. Second,
the reason player 1 does not have an optimal proposal when player 2 accepts all offers has to do with
him being able to always do a little better by offering to keepslightly more. Because the pie is perfectly
divisible, there is nothing to pin the offers. However, making the pie discrete (e.g. by slicing it inton equal
pieces and then bargaining over the number of pieces each player gets to keep) will change this as well.

It is worth noting that sometimes scholars impose a requirement that whenever a player is indifferent
between two actions, she chooses one of them. (In this case, it would go something like, “if player 2
is indifferent between accepting some offer and rejecting it, then she accepts it”.) This makes it sound
like we have introduced a indifference-breaking rule as part of the equilibrium definition. This is not the
case! As the discussion above makes clear, there is no equilibrium in which player 2 rejects an offer when
indifferent because there is no best response to such a strategy. Thus, it is part of the equilibrium that she
accepts it, not some extra requirement.
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3.5 Finite Horizon Bargaining with Alternating Offers

The Ultimatum Game does not allow player 2 to make counter-offers, which gives all the bargaining
leverage to player 1. Let’s see what happens if she can rejecthis proposal in order to make a counter-offer.

Players 1 and 2 are bargaining over the division of a benefit ofsize� > 0 using the alternating offers
protocol. Player 1 starts in period 1 by making an offerx1 2 Œ0; ��, which player 2 can either accept or
reject. If she accepts, the game ends with the split.� � x1; x1/. If she rejects, the game moves to period
2, where player 2 makes an offerx2 2 Œ0; �� that player 1 can either accept or reject. If player 1 accepts,
the game ends with the split.x2; � � x2/. If he rejects, the game moves to period 3, where player 1 makes
an offer, and so on. The bargaining continues up toT periods, and ends inT C 1 with both players getting
nothing if no agreement has been reached. Players discount periods by a common factorı 2 .0; 1/.

We shall consider the game withT odd, which means that player 1 is the last to make an offer before
the game ends (the other case is analogous). Consider the final periodT : this is the Ultimatum Game that
we just analyzed. If player 2 rejectsxT , she will obtain a payoff of 0, and so she is willing to accept any
xT > 0, and is indifferent ifxT D 0. In equilibrium, she must acceptxT D 0 (because if she were to
reject it with positive probability, player 1 has no best response: any offer better than zero would result
in acceptance but each such offer can be improved upon by offering slightly less), and so player 1 would
offer xT D 0.

Consider nowT � 1: if player 1 rejectsxT �1, he will obtain� in the next period, but because he has to
wait for that, his present discounted value of rejection isı� . This is now an Ultimatum Game with player
2 making the demand except that player 1 gets a strictly positive payoff if he rejects. Not surprisingly, the
logic of the Ultimatum Game tells us that player 2 would extract the entire surplus with her offer. Player 1
would accept any offer that is strictly better than this reservation value and reject anything less than that. In
equilibrium, he must accept when indifferent, and since offering anything more than that is not profitable
for player 2, she must offerxT �1 D ı� , which will be accepted.

Consider nowT � 2: if player 2 rejectsxT �2, she will obtain� � ı� D .1 � ı/� in the next period, but
because she has to wait for that, her present discounted value of rejection isı.1 � ı/� . By the arguments
above,xT �2 D ı� � ıxT �1, which she accepts.

Consider nowT � 3: if player 1 rejectsxT �3, he will obtain� � xT �2, and since he must wait for that,
his reservation value isı.� �xT �2/. By the arguments above, player 2 offersxT �3 D ı� �ıxT �2, which
he accepts.

Consider nowT � 4: player 2’s reservation value isı.� � xT �3/, so player 1’s equilibrium offer must
bexT �4 D ı� � ıxT �3.

The pattern is clear: in any periodt 2 f1; : : : ; T � 1g, the offer is defined recursively as

xt D ı� � ıxtC1;

with xT D 0. You could use difference equations to solve this or you could go about it as follows. We can
write the pattern:

xT �1 D �ı

xT �2 D �.ı � ı2/

xT �3 D �.ı � ı2 C ı3/

xT �4 D �.ı � ı2 C ı3 � ı3/

xT �5 D �.ı � ı2 C ı3 � ı4 C ı5/

:::
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xT �t D �� �

t
X

�D1

.�ı/� :

There are a couple of ways to solve this. One involves applying the formula for a finite geometric series.13

The other method is to calculate it using the formulas for finite and infinite sums:14
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Since the first-period (t D T � 1) offer is accepted, player 1’s equilibrium share is:

� � x1 D �

"

1 �
ı.1 � .�ı/T �1/

1 C ı

#

D �

"

1 C ı.�ı/T �1
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#

D
�.1 C ıT /

1 C ı
;

where the last step follows from the fact that whenT is odd,.�ı/T �1 D ıT �1. Player 2’s share is, of
course, justx1 < � � x1.

Thus, we conclude that in the unique SPE players must reach anagreements immediately, and no delay
wil occur. Note that player 1 has a double advantage: as thelast mover, he gets to extract the entire surplus
in the final period, which then “percolates” to up the game tree with player 2 being forced to make large
concessions; and as thefirst mover, he gets to extract the entire surplus from delaying agreement.

What happens to the shares if one increases the number of timeperiods? It is clear that player 1’s share
is decreasingin T , and converges to:

lim
T !1

� � x1 D
�

1 C ı
;

13The formula is:
n

X

iD1
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�
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1 � r

�

;

with a first terma1 D a D �ı and common ratior D �ı. This yields the offer for any arbitrary period:
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�
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1 C ı

�

:

14If you cannot recall these formulas, you can derive them as follows. First, you will need to know the sum of the infinite series
P

1

tD0 at D 1=.1 � a/, wherea 2 .�1; 1/. This you can get as follows:
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We need a finite sum, which we can express as follows:
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The indexing in our expression starts att D 1, so we obtain:

T
X

tD1

at D

T
X

tD0

at � a0 D
1 � aT C1

1 � a
� 1 D

a
�

1 � aT
�

1 � a
:

Lettinga D �ı yields the result.
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which means that longer time horizons make the distributionmore equitable by limiting the surplus that
player 1 can extract from player 2. Of course, the number of periods will not matter if players do not
care about the future: in the extreme, withı ! 0, player 1 will take everything. However, as players
become very patient, player 2 begins to acquire some bargaining leverage, and in the limit, “force” an
equal division of the pie:

lim
ı!1

�

1 C ı
D

�

2
:

We shall have occasion to comment on these results when we discuss alternating-offers bargaining without
a set time horizon.15

4 Subgame-Perfect Equilibrium

If you accept the logic of backward induction, then the following discussion should seem a natural exten-
sion. Consider the game in Fig. 13 (p. 26). Here, neither of player 2’s choices is dominated at her second
information set: she is better off choosingD if player 1 playsA and is better off choosingC if player 1
playsB. Hence, we cannot apply backward induction (yet).

However, we can reason in the following way. The game that begins with player 1’s second information
set—the one following the history.D; R/—is a zero-sum simultaneous move game. We have seen similar
games, e.g., MATCHING PENNIES. The expected payoffs from the unique mixed strategy Nash equilibrium
of this game are.0; 0/. Therefore, player 2 should only chooseR if she believes that she will be able to
outguess player 1 in the simultaneous-move game. In particular, the probability of obtaining 2 should be
high enough (in outweighing the probability of obtaining�2) that the expected payoff fromR is larger
than 1 (the payoff he would get if he playedL). This can only happen if player 2 believes she can outguess
player 1 with a probability of at least3=4, in which case the expected payoff fromR will be at least
3=4.2/ C 1=4.�2/ D 1. But, since player 2 knows that player 1 is rational (and therefore just as cunning
as she is), it is unreasonable for her to assume that she can outguess player 1 with such high probability.
Therefore, player 2 should chooseL, and so player 1 should goD. The equilibrium obtained by backward
induction in the game in Fig. 13 (p. 26), then, ish.D; 1=2ŒA�/; .L; 1=2ŒC �/i.

DU

2; 2

1

RL

3; 1

2

BA

1

2
D

�2; 2

C

2; �2

D

2; �2

C

�2; 2

Figure 13: The Fudenberg & Tirole Game.

15One must be careful with the limits here. I used nested limits(first on the length of the interaction and then on the discount
factor) but one can easily see that the multivariate limit,.T; ı/ ! .1; 1/ is indeterminate – if I were to take the nested limit in
the reverse order, I will end up with limı!1 � � x1 D �, which is clearly independent ofT .
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This now is the logic of subgame perfection: replace every “proper subgame” of the tree with one of
its Nash equilibrium payoffs and perform backward induction on the reduced tree.16 For the game in
Fig. 13 (p. 26), once we replace the subgame that starts at player 1’s second information set with the Nash
equilibrium outcome, the game becomes the one in Fig. 9 (p. 20), which we have already analyzed and for
which we found that the backward-induction equilibrium ishD; Li.

We were a little vague in the preceding paragraph. Before we formally define what a subgame perfect
equilibrium is, we must define what constitutes a “proper subgame.” It really isn’t hard: a proper subgame
is any part of a game that can be analyzed as a game itself.

DEFINITION 8. A proper subgameG of an extensive-form game� consists of asingledecision node
and all its successors in� with the property that ifx0 2 G andx00 2 h.x0/, thenx00 2 G as well. The
payoffs are inherited from the original game.

That is,x0 andx00 are in the same information set in the subgame if and only if they are in the same
information set in the original game. The payoffs in the subgame are the same as the payoffs in the original
game only restricted to the terminal nodes of the subgame. Note that the word “proper” does not mean
strict inclusion as in the term “proper subset.” Any game is always a proper subgame of itself.17

Proper subgames are quite easy to identify in a broad class ofextensive form games. For example, in
games of complete and perfect information, every information set (a singleton) begins a proper subgame
(which then extends all the way to the end of the tree of the original game). Each of these subgames
represents a situation that can occur in the original game.

On the other hand, splitting information sets in games of imperfect information produces subgames
that are not proper because they represent situations that cannot occur in the original game. Consider, for
example, the game Fig. 14 (p. 27) and two candidate subgames.

DU

1

2

x0 x00RL RL
2

x0 x00RL RL x0 RL
2

Figure 14: A Game with Two “Improper” Subgames.

The two subgames to the right of the original game are not proper. The first one fails the requirement
that a proper subgame begin with a single decision node. The second one fails the requirement that if
two decision nodes are in the same information set in the original game, they must also be in the same
information set in the proper subgame.

The reasons for these restrictions are intuitive. In the first case, player 2 needs to know the relative prob-
abilities for the decision nodesx0 andx00 but the “game” specification does not provide these probabilities.
Therefore, we cannot analyze this situation as a separate game. In the second case, player 2 knows that
player 1 did not playD, and so has more information than in the original game, wherehe did not know
that.

16If the game has multiple Nash equilibria, then players must agree on which of them would occur. We shall examine this
weakness in the following section.

17Rasmusen departs from the convention in his bookGames and Information, where he defines a proper subgame to mean
strict inclusion, and so he excludes the entire game from theset. We shall follow the convention.
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To make things a little easier, here are some guidelines for identifying subgames. A subgame (a) always
starts with a single decision node, (b) contains all successors to that node, and (c) if it contains a node in
an information set, then it contains all nodes in that information set. (Never split information sets.)

Now, given these restrictions, the payoffs conditional on reaching a proper subgame are well defined.
We can therefore test whether strategies are a Nash equilibrium in the proper subgame as we normally do.
This allows us to state the new solution concept.

DEFINITION 9. A behavior strategy profile� of an extensive form game is asubgame perfect equilib-
rium (SPE) if the restriction of� to G is a Nash equilibrium for every proper subgameG.

You should now see why it was necessary to define the behavior strategies: some proper subgames (e.g.
the one in F&T’s Game from Fig. 13 (p. 26)) have subgames wherethe Nash equilibrium is in mixed
strategies, which requires that players be able to mix at each information set. (You should at this point go
over the difference between mixed and behavior strategies in extensive-form games.)

This now allows us to solve games like the one in Fig. 13 (p. 26). There are three proper subgames:
the entire game, the subgame beginning with player 2’s information set, and the subgame that includes the
simultaneous moves game. We shall work, as we did with backward induction, our way up the tree. The
smallest proper subgame has a unique Nash equilibrium in mixed strategies, where each player chooses
one of the two available actions with the same probability of.5. Given these strategies, each player’s
expected payoff from the subgame is 0. This now means that player 2 will chooseL at her information
set because doing so nets her a payoffs strictly larger than choosingR and receiving the expected payoff
of the simultaneous-moves subgame. Given that player 2 choosesL at her information set, player 1’s
optimal course of action is to goD at the initial node. So, the subgame perfect equilibrium of this game is
h.D; 1=2/; .L; 1=2/i.

Let’s compare this to the normal and reduced normal forms of this extensive-form game; both of which
are shown in Fig. 15 (p. 28).

Player 1

Player 2
LC LD RC RD

UA 2; 2 2; 2 2; 2 2; 2

UB 2; 2 2; 2 2; 2 2; 2

DA 3; 1 3; 1 2; �2 �2; 2

DB 3; 1 3; 1 �2; 2 2; �2

L RC RD

U 2; 2 2; 2 2; 2

DA 3; 1 2; �2 �2; 2

DB 3; 1 �2; 2 2; �2

Figure 15: The Normal and Reduced Normal Forms of the Game from Fig. 13 (p. 26).

The normal form game on the left has 4 pure strategy Nash equilibria: hUA; RC i, hUA; RDi, hUB; RC i,
andhUB; RDi. The reduced normal form game has only two:hU; RC i andhU; RDi. None of these are
subgame perfect. However, the reduced form also has a Nash equilibrium in mixed strategies,

˝

��

1 ; ��

2

˛

, in
which��

1 .DA/ D ��

1 .DB/ D 1=2, and��

1 .U / D 0; while ��

2 .L/ D 1, and��

2 .RC / D �2.RD/ D 0. The
Nash equilibrium is

h.0; 1=2; 1=2/; .1; 0; 0/i

which is precisely the subgame-perfect equilibrium we already found.
At this point you should make sure you can find this mixed strategy Nash equilibrium. Suppose player

2 choosesRC for sure, thenDB is strictly dominated, so player 1 will not use it. However, this now
meansRD strictly dominatesRC for player 2, a contradiction. Suppose now that she choosesRD for
sure. ThenDA is strictly dominated, so player 1 will not use it. But nowRC strictly dominatesRD, a
contradiction. Therefore, there is no equilibrium in whichplayer 2 chooses eitherRC or RD for sure.

28



Suppose player 2 puts positive weight onL and RC only. Then,DA is strictly dominant for player
1. However, 2’s best response toDA is RD, a contradiction with supposition that she does not play it.
Hence, no MSNE in which she plays onlyL andRC . Suppose now that she playsL andRD only. Then
DB is strictly dominant, but player 2’s best response to this isRC , a contradiction. Hence, no MSNE in
which she plays onlyL andRD either. Suppose next that she playsRC andRD only. ThenU is strictly
dominant, and since player 2’s payoff is the same againstU regardless of the strategy she uses, we have a
continuum of MSNE:hU; �2.RC / 2 .0; 1/; �2.RD/ D 1 � �2.RC /i. Suppose next she playsL for sure.
Then player 1 is indifferent betweenDA andDB, each of which strictly dominatesU , so he can mix with
�1.DA/ 2 .0; 1/ and�1.DB/ D 1 � �1.DA/. Since player 2 must not be willing to use any of her other
pure strategies, it follows thatU2.�1.DA/; RC / � 1 , �1.DA/ � 1=4, andU2.�1.DA/; RD/ � 1 ,

�1.DA/ � 3=4. Therefore,�1.DA/ 2 Œ1=4; 3=4� are all admissible mixtures, and we have a continuum of
MSNE. The subgame-perfect MSNE is among these: the one with�1.DA/ D 1=2.18

As you can see, we found a lot of MSNE but only one of them is subgame-perfect. This reiterates the
point that all SPE are Nash, while not all Nash equilibria aresubgame-perfect. Note the different way of
specifying the equilibrium in the extensive form and in the reduced normal form.

We can now state a very important result that guarantees thatwe can find subgame perfect equilibria for
a great many games.

THEOREM 4. Every finite extensive game with perfect information has a subgame perfect Nash equilib-
rium. ✷

To prove this theorem, simply apply backward induction to define the optimal strategies for each subgame
in the game. The resulting strategy profile is subgame perfect.

Let’s revisit our basic escalation game from Fig. 10 (p. 22).It has three subgames, shown in Fig. 16
(p. 29) and labeled I, II, and III. What are the pure-strategyNash equilibria in all these subgames? We
have already found the three equilibria of subgame I:h.�e; a/; ri, h.�e; �a/; ri, andh.e; a/; �ri. The
Nash equilibrium of subgame III is trivial:�a. You should verify (e.g. by writing the normal form) that
the Nash equilibria of subgame II are:ha; �ri andh�a; ri.

�e
0; 0

e

1
�r

10; �10

r
2 �a

�10; 10

a
�15; �15

1

I
II

III

Figure 16: The Subgames of the Basic Escalation Game.

Of the three equilibria in subgame I (the original game), which ones are subgame perfect? That is, in
which of these do the strategies constitute Nash equilibriain all subgames? The restriction of the strategies
to subgame II shows that no strategy profile that involves anything other than the combinationsha; �ri and
h�a; ri would be subgame perfect. This eliminates the Nash equilibrium profileh.�e; a/; ri of the original
game. Further, the restriction of the strategies to game IIIdemonstrates that no profile that involves player
1 choosing anything other than�a would be subgame perfect either. This eliminates the Nash equilibrium

18I leave the final possibility as an exercise: what happens if player 2 puts positive weight on all three of her strategies?
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profileh.e; a/; �ri of the original game. There are no more subgames to check, andtherefore all remaining
Nash equilibria are subgame perfect. There is only one remaining Nash equilibrium:h.�e; �a/; ri and
this is the unique subgame perfect equilibrium. Of course, it is the one we got from our backward induction
method as well.

Subgame perfection (and backward induction) eliminates equilibria based upon non-credible threats
and/or promises. This is accomplished by requiring that players are rational at every point in the game
where they must take action. That is, their strategies must be optimal at every information set, which is
is a much stronger requirement than the one for Nash equilibrium, which only demands rationality at the
first information set.

Note that nowhere in our definition of extensive form games did we restrict either the number of actions
available to players at their decision nodes nor the number of decision nodes. For example, a player may
have a continuum of actions or some terminal history may be infinitely long. If a player has a continuum
of action at any decision node, then there is an infinite number of terminal histories as well. We must
distinguish between games that exhibit some finiteness fromthose that are infinite.

If the length of the longest terminal history is finite, then the game hasfinite horizon. If the game has
finite horizon and finitely many terminal histories, then thegame isfinite. Backward induction only works
for games that are finite. Subgame perfection works fine for infinite games.

4.1 The Dollar Auction

Let’s now play the following game. I have $1 that I want to auction off using the following procedure.
Each student can bid at any time, in 10 cent increments. When no one wants to bid further, the auction
ends and the dollar goes to the highest bidder. Both the highest bidder and the second highest bidder pay
their bids to me. Each of you has $3.00 to bid with and you cannot bid more than that.

[ What happened? ]

Let’s analyze this situation by applying backward induction. Consider a game with 2 players, and
assume that it is not worth spending a dollar in order to win a dollar. Because of the budget constraint,
whoever bids $3.00 will win the auction. When would a player ever want to bid $3.00? Clearly, the only
reason to do so would be if that player is attempting to avoid aloss from an existing bid. Letx > 0 be that
player last bid that he would have to pay if he loses the auction. He would bid $3.00 if

$1 � $3:00 > �x ) x > $2:00 ) x � $2:10;

where the last step follows from the assumption that playerscan only bid in $0.10 increments. That is,
if a player ever bids $2.10 or more, then he must be willing to go all the way up to $3.00 and win the
auction. The reason is simple: not bidding at this point would entail a loss of $2.10, whereas bidding at
the maximum would entail a loss of $2.00 only. Thus, whoever bids $2.10 first has a credible threat to
escalate the auction to $3.00 and win it. This means that the other player has no incentive to attempt to
outbid him. In effect, the $2.10 bid is “equivalent” to the winning $3.00 bid in that it also wins the auction
immediately.

Why would anyone bid $2.10 though? Again, since doing so and winning entails a certain loss, it must
be that not doing so would incur an even bigger loss. In other words, the player willing to escalate to
$2.10 must have made a previous bid that they would lose unless they escalate. Lety > 0 be that player’s
existing bid. He would bid $2.10 only if

$1 � $2:10 > �y ) y > $1:10 ) y � $1:20;
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where we used the $0.10 increment rule again. So, if some player ever bids $1.20 or more, then he must be
willing to go all the way to $2.10 to win the auction, where, one should recall, the bidding would have to
end for sure because this player has a credible threat to go all the way to $3.00 in order to win. This means
that the other player has no incentive to attempt to outbid him, which would end the auction immediately.
In effect, the $1.20 bid is “equivalent” to the winning $2.10and $3.00 bids in that it also wins the auction
immediately.

Why would anyone bid $1.20 though. Since this still entails aloss even in winning the auction, it must
be that the player’s previous bid is positive and he does not want to lose it. Let́ > 0 denote that bid. The
player would bid $1.20 only if

$1 � $1:20 > �´ ) ´ > $0:20 ) ´ � $0:30;

where the increment rule came into play again. Whoever bids $0.30 or more must be willing to go all the
way to $1.20 to win the auction. Since that player has a credible threat to continue up to $3, the other
player has no incentive to attempt to outbid him, and so the auction must end immediately. In effect,
the $0.30 bid is “equivalent” to the winning $1.20, $2.10, and $3.00 bids in that it also wins the auction
immediately.

If someone bids $0.30, then nobody with a smaller bid has an incentive to challenge him, and knowing
this no such bids should be made. Thus, in the SPE, the player that moves first should bid $0.30, and the
auction would end, giving him a profit of $0.70 and allowing the other player not to suffer any losses. (The
auctioneer would lose here.)

How does that correspond to our outcome? I bet (pun intended)not too well. I usually auction off the
dollar for a profit of about $2 with grad students, and more than double that with undergrads.

Before pondering why, let us look at an extensive-form representation of a simpler variant, where two
players have $3.00 each but they can only bid in dollar increments in an auction for $2.00.

Pass

0; 0

$3

�1; 0 $2$1

1

$3

�2; �1

Pass

0; 0

2

$3

�1; �1

Pass

1; 0

$2

2

$3

�1; �2

Pass

�1; 0

1

Assume, as before, that if a player is indifferent between bidding and passing, they pass. We begin
with the longest terminal history,.$1; $2/, and consider 1’s decision there. Since 1 is indifferent between
Passing and bidding $3, player 1 would pass. This means that player 2 would be indifferent between
bidding $2 and passing at the decision node following history .$1/, and so she would pass. The subgame
beginning at the information set.$1/ has a unique SPE in pure strategies:.Pass; Pass/.

At the decision node following history.$2/, player 2’s unique optimal action is to pass, and so the
subgame perfect equilibrium there is.Pass/. Therefore, player 2’s strategy must specify Pass for this
decision node in any SPE.
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Consider now player 1’s initial decision. Since the players’ strategies are such that they play the
.Pass; Pass/ SPE in the subgame after history.$1/, then player 1 does best by bidding $1 at the out-
set. Therefore,h.$1; Pass/; .Pass; Pass/i is the SPE of the game under the indifference rule. The outcome
is that player 1 bids $1 and player 2 passes. This correspondsclosely to the outcome in our discussion
above.

There is a general formula, due to Barry O’Neill, that you canuse to calculate the optimal size of the
first bid, which depends on the amount of money available to each bidder, the size of the award, and the
amount of bid increments. Let the bidding increment be represented by one unit (so the unit in our example
is a dime). If each player hasb units available for bidding, and the award isv units, the optimal bid is
..b �1/ mod .v �1//C1. In our example, this translates to.30�1/ mod .10�1/C1 D 3 units, which
equals30 cents, just as we found.

It is interesting to note that the size of the optimal bid is very sensitive to the amount each player
has available for bidding. If each player has $2.80 instead of $3.00, then the optimal bid is.28 � 1/

mod .10 � 1/ C 1 D 1, or just 10 cents. If, however, each has $2.70, then the optimal bid is .27 � 1/

mod .10 � 1/ C 1 D 9, or 90 cents.
The Dollar Auction was first described by Martin Shubik who reported regular gains from playing the

game in large undergraduate classes. The game is a very useful thought experiment about escalation. At
the outset, both players are trying to win the prize by costlyescalation, but at some point the escalation
acquires momentum of its own and players continue paying costs to avoid paying the larger costs of
capitulating. The requirement that both highest bidders pay the cost captures the idea of escalation.

There is just one problem with using the game to explain escalation: in the SPE no escalation occurs!
Whereas the cost-avoiding logic does establish the credibility of threats off the path of play to continue
until the ultimate end (which in itself “punctuates” the play by establishing thresholds where particular bids
must end the game immediately), this very credibility induces player to avoid incurring any unnecessary
costs in the first place: the player who makes the appropriateinitial bid wins instantly, and benefits from
doing so.

The no-escalation SPE stands in stark contrast with experimental results where escalation is very com-
mon, and where it often involves costs that well exceed the benefit of winning. One could argue that
players in these experiments do not understand the game at the outset, and by the time they figure it out,
they are locked in the cost-avoidance phase of the game. But the problem there is that usually even after
only two players are left in that phase, they keep bidding instead of one of them immediately hitting one
of the thresholds and winning. (This is why I had to restrict the budgets to $3: I once tried the game with
$10 budgets and the players did not stop until they almost exhausted them.) Players do understand the
cost-avoidance logic — what they do not seem to quite settle on is the credibility of the threat to continue
the escalation once a threshold bid is made.

To me this suggests that in these experiments players might not be playing the game as specified but
a variant of it that involves incomplete information about the abilities or risk-propensities of the other
players. The problem is not that the players are irrational in the Nash sense but that the experimenter has
not been able to control the experiment. The intuition is that the SPE result is predicated on the threats
being credible (to all involved), and the cost-avoidance logic establishes the credibility to go all out at
certain bid levels. If there is a small probability that a bidjust above the particular threshold would win
the auction (e.g., because the other player makes a mistake and quits or because she is risk-averse and
quits instead of escalating as she should or because there isan exogenous probability of being declared the
winner), then the magnitude of the threat would matter. In fact, if the losses incurred with the previous bid
are not very high, then one might be tempted to “cross” the threshold, causing the game to escalate to the
next one threshold, where a similar problem might re-occur.Since the costs become larger as the game
nears the end, the incentive to try one’s luck gets weaker, and so the game becomes increasingly likely

32



to end at the threshold. If escalation has this property (andmany real-life situations probably do have it),
then one could explain escalation with the model suitably adjusted.19

4.2 Sophisticated Voting and Agenda Control

Suppose there are three players,I D f1; 2; 3g, who must choose one from three alternativesX D fx; y; ´g.
Their preferences are as follows:

� Player 1:x � y � ´;

� Player 2:y � ´ � x;

� Player 3:´ � x � y.

They must make their choice through majority rule voting in atwo-stage process. They first vote on two of
the alternatives and the winner is then pitted against the remaining alternative in the second round. Players
cast their votes simultaneously in each of the two rounds. Suppose player 2 controls the agenda—that is,
she can decide which two alternatives are to be voted on in thefirst round. What is her choice?

We need to find the SPE. Clearly, player 2 will set an agenda that ensures thaty is the winner if that’s
possible. We have to consider the three possible situations, depending on which two alternatives are
selected in the first round. To find the subgame-perfect equilibrium, we have to ensure that the strategies
are optimal in all subgames. There are three generic subgames that begin with the second round: depending
on the winning alternative in the first round, the second round can involve a vote on.x; y/, or .x; ´/, or
.y; ´/. So let’s analyze each of these subgames.

Note first that because there are only two alternatives and three players, it follows that in any PSNE,
at least two players must vote for the same alternative. Observe now that casting asincerevote—that is,
voting for the preferred alternative—is weakly dominant for each player. If the other two players vote for
different alternatives, then the third player’s vote is decisive, and it is strictly better to cast it sincerely. If,
on the other hand, the two other players vote for the same alternative, then the third player’s vote cannot
change the outcome. Therefore, there are two possible PSNE in these subgames: either all players vote
sincerely or they all vote for the same alternative. Technically, this means that whenx is pitted against
y, it is possible to gety to win: the strategy profile in which all players vote fory is a Nash equilibrium.
However, this PSNE requires two of the players to vote against their preferred alternative andexpect that
they do so, which seems highly implausible. In this instance, I would rule out the PSNE involving weakly
dominated strategies. Using only weakly dominant strategies then yields a unique PSNE with sincere
voting for each of the subgames, as follows:

� if .x; y/, thenx wins (1 and 3 votex and 2 votesy);

� if .x; ´/, then´ wins (2 and 3 voté and 1 votesx);

� if .y; ´/, theny wins (1 and 2 votey and 3 voteś ).20

In other words, we know that in SPE the second round will involve sincere voting and produce a winner
accordingly.

19This, in fact, is the essence of the model that Bahar Leventoğlu and I proposed to explain why wars might not be settled
immediately despite both sides having complete information — in our case, if a player escalates unexpectedly, there is asmall
exogenous chance that the other player would collapse.

20Of course, there are also the PSNE in which two players vote sincerely and the third, whose vote is irrelevant, also votes for
the same alternative. For instance, in.x; y/, there is PSNE in which all players vote forx. Since player 3’s choice cannot affect
the outcome, he might as well vote insincerely.
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Going back to our original question, how is player 2 to set theagenda? Clearly, ify is ever to emerge
as the winner given that the 2nd round will involve sincere voting, it will have to be pitted there against´

because againstx it will lose. Since´ defeatsx in sincere voting, then perhaps choosing.x; ´/ as the first
round agenda would work?

The answer is that it will not. Suppose player 2 set the agendawith .x; ´/ in the first round and everyone
voted sincerely. Then the winner would be´, and in the second round the winner would bey. But players
can anticipate this outcome. In particular, player 3 knows that the winner of the first comparison would go
on to compete withy and ify prevails in the 2nd round, he will get his worst possible alternative. Sincey
will beat ´ with sincere voting, this means that he really does not want´ to win in the first round. If votes
are cast sincerely in the first round, then player 1 is voting for x while players 2 and 3 are voting foŕ.
However, if player 3 deviated and cast asophisticatedvote forx instead, thenx will win the first round,
and in the second round the sincere vote on.x; y/ would leavex as the winner. Although the sophisticated
vote does not enable player 3 to get his most preferred alternative, it does enable him to avoid the worst
possible one.21

This now means that whatever player 2 chooses, her agenda hasto be invulnerable to sophisticated
voting. Well, as they say, if you can’t beat them, join them: player 2 will exploit the sophistication of
the players by setting the agenda for the first round to.x; y/. Observe that with sincere voting,x would
defeaty. However, this would pitx against́ in the 2nd round, in which caséwill prevail. Player 1 can
foresee this and sincéis his worst possible alternative, he will cast a sophisticated vote fory against her
preference forx over y. Doing so would ensure thaty will go on to the 2nd round and defeat´, which
gives him the second-best outcome. Of course, our devious player 2 can now enjoy her most preferred
alternative. Therefore, the profile

h.y; xy/; .y; ´; y/; .x; ´´/i

is a subgame-perfect equilibrium when.x; y/ is the pair in the first round. The strategies are specified as
a triple over the.x; y/ choice in the first round, and then the.x; ´/ and.y; ´/ possible subgames in the
second round. In this SPE player 1 is casting a sophisticatedvote (note that player 2’s manipulation pays
off even though she votes sincerely). Alternativey defeatsx, and then goes on to defeat´ in a sincere
vote in the 2nd round. Since this SPE yields player 2 her most preferred alternative, the overall SPE of the
game involves her setting the agenda such that.x; y/ are the two competing alternatives in the first round.

We know from McKelvey’s Chaos Theorem that if players vote sincerely using majority rule to select
winners in pairwise comparisons, then any outcome is possible provided no equilibrium position exists.
(That is, for any two alternatives, one can always find an agenda that guarantees that one beats the other.)
With sophisticated voting, this chaos is a bit reduced: for any two alternatives, there will be an agenda
that guarantees that one defeats the other only if the winnercan also beat the loser in a majority vote with
sincere voting or there is a third alternative that can defeat the loser and itself be defeated by the winner in
a majority vote with sincere voting (this is due to Shepsle and Weingast). In our situationy can beat́ on
its own with sincere voting, andy can beatx through´ becausé can defeatx in sincere voting andy in
turn defeatś . Hence, there is an agenda that ensuresy is reachable.22

Agenda-setting gives player 2 the ability to impose her mostpreferred outcome and there is nothing
(in this instance) that the others can do. For instance, player 1 and player 3 cannot collude to defeat her
obvious intent. To see this, suppose player 3 proposed a dealto player 1: if player 1 would vote sincerely
for x in the first round, then player 3 would reward him by voting forx on the 2nd round. Sincex will

21Here, as before, there are equilibria in which all three players vote for the same alternative and two of them vote againsttheir
preferences. For instance, in.x; ´/ this would require them all to vote forx. Coupling this with any PSNE in the 2nd round will
yield an SPE, but the solution is implausible for the same reasons we discussed already.

22In our game, each of the three outcome is possible with an appropriate agenda. Sophisticated voting does not reduce the
chaos.
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then beaty in the first round, player 3’s insincere vote in the second round would ensure thatx will defeat
´ as well. This would benefit both players: player 1 would get his most preferred outcome and player 3
would avoid the worst outcomey and get his second-best. Unfortunately (for player 3), he cannot make a
credible promise to cast an insincere vote. Ifx defeatsy in the first round, then player 3 can get his most
preferred outcome by voting sincerely in.x; ´/ in the second round. Therefore, he would renege on his
pledge, so player 1 has no incentive to believe him. But sincethis reneging would saddle player 1 with his
worst outcome, player 1 would strictly prefer to cast his sophisticated vote in the first round even though
he is perfectly aware of how player 2 has manipulated the agenda to her advantage. The inability to make
credible promises, like the inability to make credible threats, can seriously hurt players. In this instance,
player 3 gets the worst of it.

4.3 The Holdup Game

Credible commitment issues crop up in various settings. Consider the following three-stage game. Before
playing the Ultimatum Game from the previous section, player 2 can determine the size of the pie by
exerting a small effort,eS > 0 resulting in a small pie of size�S , or a large effort,eL > eS , resulting in a
larger pie of size�L > �S . Since player 2 hates exerting any efforts, her payoff from obtaining a share of
sizex is x � e, wheree is the amount of effort expended. The extensive form of this game is presented in
Fig. 17 (p. 35).
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Figure 17: The Holdup Game.

We have already analyzed the Ultimatum Game, so each subgamethat follows player 2’s effort has
a unique SPE where player 1 proposesx D � and player 2 accepts all offers (note that the difference
between this version and the one we saw above is that player 2 gets a strictly negative payoff if she rejects
an offer instead of 0). So, in the subgame followingeS , player 1 offers�S and in the subgame following
eL he offers�L. In both cases player 2 accepts these proposals, resulting in payoffs of�eS and�eL

respectively. Given these SPE strategies, player 2’s optimal action at the initial node is to expend little
effort, oreS because doing so yields a strictly better payoff.

We conclude that the SPE of the Holdup Game is as follows. Player 1’s strategy is.�S ; �L/ and player
2’s strategy is.eS ; Y; Y /, whereY means “accept all offers.” The outcome of the game is that player 2
invests little effort,eS , and player 1 obtains the entire small pie�S .

Note that this equilibrium does not depend on the values ofsS ; eL; �S ; �L as long aseS < eL. Even if
�L is much larger than�S andeL is only slightly higher thaneS , player 2 would still exert little effort in
SPE although it would be better for both players if player 2 exertedeL (remember, onlyslightly larger than
eS ) and obtained a slice of the larger pie. The problem is that player 1 cannot credibly promise to give that
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slice tho player 2. Once player 2 expends the effort, she can be “held up” for the entire pie by player 1.
This result holds for similar games where the bargaining procedure yields a more equitable distribution.

If player 2 must expend more effort to generate a larger pie and if the procedure is such that some of this
surplus pie goes to the other player, then for some values of player 2’s cost of exerting this effort, she would
strictly prefer to exert little effort. Although there are many outcomes where both players would be strictly
better off if player 2 exerted more effort, these cannot be sustained in equilibrium because of player 1’s
incentives. In the example above, player 1 would have liked to be able to commit credibly to offering some
of the extra pie to induce player 2 to exert the larger effort.Just like the problem with non-credible threats,
the problem of non-credible promises means that this cannothappen in subgame perfect equilibrium.

4.4 A Two-Stage Game with Several Static Equilibria

Promises about future behavior can be credible and useful when the behavior involve equilibrium play.
We now look at an example of this that is also a useful introduction to some ideas that we shall develop at
length when we turn to repeated games next.

Consider the game corresponding to two repetitions of the symmetric normal form game depicted in
Fig. 18 (p. 36). In the first stage of the game, the two players simultaneously choose among their actions,
observe the outcome, and then in the second stage play the static game again. The payoffs are simply the
discounted average from the payoffs in each stage. That is, letp1

i represent playeri ’s payoff at stage 1 and
p2

i represent his payoff at stage 2. Then playeri ’s payoff from the multi-stage game isui D p1
i C ıp2

i ,
whereı 2 .0; 1/ is the discount factor.

Player 1

Player 2
A B C

A 0; 0 3; 4 6; 0

B 4; 3 0; 0 0; 0

C 0; 6 0; 0 5; 5

Figure 18: The Static Period Game.

If the game in Fig. 18 (p. 36) is played once, there are three Nash equilibria, two asymmetric ones in
pure strategies:hB; Ai, hA; Bi, and one symmetric in mixed strategies with�.A/ D 3=7, and�.B/ D 4=7.

How do we find the MSNE? You should notice that the PSNE do not involve C for any of the players,
so perhaps they would not play this in MSNE either? To check our intuition, suppose some player chooses
��

i .C / > 0 in MSNE. SinceA weakly dominatesC for i , the only reasonC could be played with positive
probability is thatA’s advantage is not realized; that is, the other player cannot be playing eitherB or
C with positive probability. Thus, the other player must be choosingA with certainty or else player
i would never chooseC since it would be strictly dominated byA, or ��

i .C / > 0 ) ��

�i .A/ D 1.
But if �i is choosingA with certainty, then playeri has a unique best response, which is to playB,
or ��

i .B/ D 1 ) ��

i .C / D 0, a contradiction. Since the game is symmetric, we can conclude that
��

i .C / D 0 for every playeri in equilibrium. This means that we can find the MSNE by considering the
2 � 2 game in Fig. 19 (p. 36).

Player 1

Player 2
A B

A 0; 0 3; 4

B 4; 3 0; 0

Figure 19: The Static Period Game after Some Equilibrium Logic..
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This is now very easy to deal with. Since player 1 is willing tomix, it follows that3�2.B/ D 4�2.A/

and since�1.B/ D 1 � �2.A/, this gives us�2.A/ D 3=7. Analogously, we obtain�1.A/ D 3=7 and
�1.B/ D 4=7. The last thing we need to do is check that the players will notwant to useC given
the mixtures (we already know this from the argument above, but it does not hurt to recall the MSNE
requirement). It suffices to check for player 1: if he playsC , his payoff will be 0 given player 2’s strategy
of playing onlyA andB with positive probability, which is strictly worse than theexpected payoff from
eitherA or B. Hence, we do have our MSNE indeed. The payoffs in the three equilibria are.4; 3/, .3; 4/,
and.12=7; 12=7/ respectively.

The efficient payoff.5; 5/ is not attainable in equilibrium with positive probabilityif the game is played
once.23 It is easy to see nine SPE in the 2-period game: the strategy profiles that simply specify strategies
that are Nash equilibrium of the stage game unconditionally. That is, take one of the three Nash equilibria
for all the subgames in the 2nd period (this is what players would do no matter what they did in the first
period). Then the first period’s behavior does not affect the2nd period by construction, and so one only
need to worry about profitable deviations from the strategies in the 1st period. But playing any of the Nash
equilibria there guarantees that no such profitable deviation would exist. Since there are 3 Nash equilibria,
there are3 � 3 D 9 unconditional SPE that can be constructed in this way. In none of these is the efficient
payoff .5; 5/ obtained with positive probability in any of the periods.

Since it is not possible to obtain this payoff in the 2nd period (as no Nash equilibrium would permit it),
the only possibility is that it obtains in the 1st period. That is, the strategies for the game would specify
non-Nash play in the first period. By definition, this means that each player has a profitable deviation for
the period, so to remove the incentive to deviate, there mustbe some negative consequences in the 2nd
period when he does deviate, and perhaps positive rewards ifhe does not. Since all SPE require Nash
behavior in the 2nd period, the different rewards and costs must be obtainable in a Nash equilibrium of
the stage game. Looking at the 3 Nash equilibria, it is clear that the PSNEhA; Bi andhB; Ai arerewards
since they yield relatively high payoffs for the players, whereas the MSNE is apunishmentsince it yields
relatively low payoffs.

Let is condition “cooperative” behavior in the first period with a system of rewards and punishments in
the second. Consider the following strategy profile for the two-stage game:

� Player 1: playC at the first stage. If the outcome is.C; C /, play B at the second stage, otherwise
play �1.A/ D 3=7; �1.B/ D 4=7 at the second stage;

� Player 2: playC at the first stage. If the outcome is.C; C /, play A at the second stage, otherwise
play �1.A/ D 3=7; �2.B/ D 4=7 at the second stage.

That is, playing.C; C / in the first period is rewarded with.B; A/ in the second period, and deviation is
punished with the MSNE. Is it subgame perfect? Since the strategies at the second stage specify playing
Nash equilibrium profiles for all possible second stages, the strategies are optimal there. At the first stage
players can deviate and increase their payoffs by 1 from 5 to 6(either player can chooseA). However,
doing so results in playing the mixed strategy Nash equilibrium at the second stage, which lowers their
payoffs to12=7 from 4 for player 1 and from 3 for player 2. Thus, player 1 will not deviate if:

6 C ı .12=7/ � 5 C ı.4/

1 � ı .4 � 12=7/

ı � 7=16

23An outcome isefficient if it is not possible to make some player better off without making the other one worse off. The
outcomes with payoffs.0; 0/ are all inefficient, as are the outcomes with payoffs.4; 3/ and .3; 4/. Efficiency does not imply
equity, however: the outcomes.6; 0/ and.0; 6/ are also efficient.
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Similarly, player 2 will not deviate if:

6 C ı .12=7/ � 5 C ı.3/

1 � ı .3 � 12=7/

ı � 7=9

We conclude that the strategy profile specified above is a subgame perfect equilibrium ifı � 7=9. Another
cooperative SPE exists with the.A; B/ being the reward in the 2nd period. Both work in the same way:
players attain the non-Nash efficient outcome at stage 1 by threatening to revert to the worst possible Nash
equilibrium at stage 2. This technique will be very useful when analyzing infinitely repeated games, where
we shall see analogous results.

4.5 A Problem with Commitment

Let us look at yet another manifestation of the commitment problem (the players being unable to make
credible promises about their own future behavior).

Two players are bargaining over the division of a benefit of size 1. Consider first a single-period in-
teraction. If both players agree to some division.x; 1 � x/ with x 2 Œ0; 1� being player 1’s share, it is
implemented immediately and players obtain instantaneousper-period payoffs

u1.x/ D x and u2.x/ D 1 � x:

Each player can also choose to impose a solution by force. Using force is costly, with each playeri paying
ci > 0. Moreover, the outcome is uncertain: player 1 wins with probability p 2 .0; 1/ and loses with
probability1 � p. Using force is a winner-take-all costly lottery, so the expected payoff is:

w1 D pu1.1/ C .1 � p/u1.0/ � c1 D p � c1

w2 D pu2.1/ C .1 � p/u2.0/ � c2 D 1 � p � c2:

We will now obtain some very general results that do not depend on the bargaining protocol. If using
force is always an option for each player, then neither wouldagree to any peaceful deal that is worse than
the expected payoff from war. Thus, peace requires thatui .x/ � wi for eachi 2 f1; 2g. It will always
be possible to find such a deal whenever the sum of what playersget in peace is at least as good as their
combined war expectations:

u1.x/ C u2.x/ � w1 C w2:

This condition is always satisfied in this model:

u1.x/ C u2.x/ D x C 1 � x D 1 > p � c1 C 1 � p � c2 D 1 � .c1 C c2/ D w1 C w2:

In other words, there exist deals that can satisfy both players’ fighting expectations and make at least one
of them strictly better off with peace (all but two such dealsmake both of them better off).

Fig. 20 (p. 39) illustrates this graphically. Since playersare risk-neutral, they will accept any deal that
gives them with certainty at least as much as their expected (risky) payoff from war. Thus, player 1 would
accept any divisionx � p � c1, whereas player 2 would accept any division1 � x � 1 � p � c2, or
x � p C c2. Clearly, then all divisionsx 2 Œp � c1; p C c2� are preferable to war for both players, so
they are mutually acceptable. This is called thebargaining range, and it always exists as long asci > 0.
The size of the bargaining range,c1 C c2, is called thebargaining surplus, and it represents what there
is to be divided peacefully after satisfying both players’ minimum demands (their war payoffs). Since
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Player 1

0

Player 2

1p− c1 p p+ c2 q

Player 1’s certainty
equivalent to war

Player 2’s certainty
equivalent to war

expected division under
the distribution of power

status quo
division of benefitdivisions both actors prefer to war

(bargaining range)

Player 1 prefers war
to any of these divisions

Player 2 prefers war
to any of these divisions

Player 1 prefers any of these divisions to war

Player 2 prefers any of these divisions to war

Figure 20: Mutually acceptable bargains always exist.

ci > 0, the surplus is always positive. The algebraic expression above simply establishes the existence
of the bargaining range by showing that it is possible to giveboth players their certainty equivalents for
war. This calculation further shows you exactly where this range is located, which means that not only is it
common knowledge that mutually acceptable deals exist, it is also common knowledge exactly what these
deals are.

It should be now obvious that the result also obtains if players are risk-averse because then they would
value the certainty equivalent more than the risky war payoff, which means they can be satisfied with shares
that are smaller than the certainty equivalents. That is, the bargaining range is larger with these players. It
also shows you that the result might not exist if players are risk acceptant. These types of players demand
larger certain shares to compensate them for foregoing the risk of the war outcome. Even if the expected
war outcomes sum up to less than the benefit, the fact that obtaining certain outcomes yields lower payoffs
means that it may well be the case that the sum of the required peace payoffs exceeds the benefit, and so
war would be unavoidable.

Fig. 20 (p. 39) includes a status quo distribution of the benefit, q 2 .0; 1/, merely to illustrate that the
result is independent of its existence and location. If it isin the bargaining range,q 2 Œw1; 1�w2�, then no
revision would take place because moving it in either direction would be detrimental to one of the players,
and since the other cannot credibly threaten war, there would be no reason to agree to it. If it is not in the
bargaining range, as in Fig. 20 (p. 39), whereq > 1 � w2, then one of the players (in this case, player 2)
can credibly threaten war if no revision takes place, and since player 1 prefers anyx � w1 to war, there is
an incentive to accommodate player 2. The division of the benefit will be revised to something inside the
bargaining range, and no war would occur either.

This model establishes therationalist puzzle of war, which goes as follows: Why would players ever
fight when mutually acceptable peaceful bargains always exist (and it is common knowledge what they
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are) whenever war is costlier than peace?24

Observe now that the argument establishes that the bargaining range exists but it does not tell you what
deal(s) in it players would coordinate on. This is because the answer to that is dependent on the structure
of the negotiation process. For instance, if player 1 can make a take-it-or-leave-it demand, then he will
extract the entire bargaining surplus:x� D p C c2, as we have seen happen in the Ultimatum Game. If
player 2 were to be given the proposal power, then she would doso: x� D p � c1. In fact, any division
x 2 Œp � c1; p C c2� could be supported with some bargaining protocol. For instance, let the players
submit proposals simultaneously, call themxi 2 Œ0; 1�, and if they are compatible,x1 C x2 � 1, the
division is implemented, and if not, then war occurs. Any strategy profile in which player 1 demands
x1 > p C c2 cannot end peacefully in equilibrium because doing so wouldyield player 2 less than her
war payoff, and she will be strictly better off submitting anincompatible demand instead. Similarly, any
strategy profile where player 2 demandsx1 < p � c1 cannot end peacefully either. All strategy profiles
with x1 2 Œp � c1; p C c2� andx2 D 1 � x1, on the other hand, are equilibria. Neither player wants to
reduce their demand because doing so would still result in peace but yield a lower payoff. Neither player
wants to increase their demand because doing so would lead towar, which cannot improve on their payoffs
either.

Thus, the prediction about the precise war-avoiding division depends on the bargaining protocol. Instead
of specifying that protocol, let us derive a very general result that will not depend on the protocol. We shall
derive asufficient condition for war, which will guarantee that the game cannot end peacefully nomatter
how players bargain as long as the assumption is maintained that each player’s peace payoff must be at
least as large as their expected war payoff.

Consider now the same interaction over two periods,t 2 f1; 2g, which are structurally identical. If
players agree to some distribution of the benefit int D 1, then this division is immediately implemented,
they receive instantaneous per-period payoffs from it, andthe game advances to the second period, where
they negotiatede novo(that is, irrespective of what the existing agreement is). Agreement ends the game
with the appropriate per-period payoffs from the (possiblynew) division. The payoff for the game is the
sum of the two per-period payoffs.

If players fight in the second period, the outcome is war with payoffs just like in the single-period game.
If they fight in the first period, the outcome is settled for both periods, so the expected war payoffs are:

Player 1W p
�

u1.1/ C u1.1/
�

C .1 � p/
�

u1.0/ C u1.0/
�

� c1 D 2p � c1

Player 2W p
�

u2.1/ C u2.1/
�

C .1 � p/
�

u2.0/ C u2.0/
�

� c2 D 2.1 � p/ � c2:

From our argument above, we know that if players reach the second period, it must always end peacefully.
The only possibility for bargaining breakdown and war must be in the first period. With the current
specification of the model, however, war will never occur because it is possible to satisfy both sides’ war
expectations int D 1 as well. To see this, letxt denote period-t ’s share for player 1. We know that peace
must prevail in the second period with somex�

2 2 Œw1; 1 � w2�.
In the first period, player 1 would prefer peace ifu1.x1/Cu1.x�

2 / � 2p �c1. This means that he would
accept any deal such thatx1 � 2p � c1 � x�

2 . Using the definition ofx�

2 , the minimum that player 1 would
accept is eitherp if x�

2 D w1, or p � .c1 C c2/ if x�

2 D 1 � w2. In other words, player 1’s minimum
demand in the first period depends on what he expects the peaceful deal to be in the second period. Let
x1 D p denote player 1’slargestminimum demand, and note that it is feasible.

Turning now to player 2, she would prefer peace ifu2.x1/ C u2.x�

2 / � 2.1 � p/ � c2. This means that
she would accept any deal such thatx1 � 2p C c2 � x�

2 . The bounds of her maximum concession also

24Fearon was the first to state the puzzle in (roughly) these terms in his “Rationalist Explanations for War” in 1995, a seminal
piece that redefined research on the causes of war.
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depend onx�

2 and are eitherp C .c1 C c2/ if x�

2 D w1 or p if x�

2 D 1 � w2. Let x1 D p denote player
2’s smallestmaximum concession, and observe that it is feasible as well.

Sincex1 D x2 D p — that is, the largest minimum demand that player 1 would evermake does not
exceed the smallest maximum concession that player 2 would be willing to make, and this demand is
feasible — we conclude that this interaction must end peacefully. There are mutually acceptable deals in
the first period as well, and war would never occur in the two-period game either.

Simply making this a dynamic problem does not, in itself, affect the outcome: peace must still prevail
as long as the game remains the same over time. One thing that might not remain the same over time,
however, is the distribution of power. Let us assume that player 1 starts the game relatively powerful,
with a distribution of powerOp 2 .0; 1/, but declines before the second period interaction begins to some
p 2 .0; Op/.

This changes nothing in the second period, where the war payoffs arewi as before, and so in any SPE,
the game must end peacefully there. The new distribution of power, however, does affect the expected war
payoffs in the first period, where player 1 can now “lock in” his advantage if he chooses to fight:

Ow1 D 2 Op � c1 and Ow2 D 2.1 � Op/ � c2:

Player 1 would prefer peace ifu1.x1/ C u1.x�

2 / � Ow1, which means that he would agree to anyx1 �

2 Op � c1 � x�

2 . But now we have a problem. Thesmallestminimum demand that player 1 could ever have
is when he obtains the best possible deal in the second period: x�

2 D p C c2. In this case, peace requires
deals such thatx1 � 2 Op �p � .c1 Cc2/ D Ox1, but this demand might not be feasible. It will be impossible
to satisfy player 1 in the first period ifOx1 > 1, or if

Op C . Op � p/ > 1 C .c1 C c2/:

This sufficiency conditioncan certainly be satisfied ifOp is sufficiently large,p is sufficiently small, and
c1 C c2 is sufficiently small. (To see this, note that ifOp is close to 1 andp is closer to zero, the left-hand
side of the inequality is close to 2, and withc1 C c2 small enough, the right-hand side will be less than
that.) We shall call. Op � p/ thesize of the power shift. If the power shift is sufficiently large, then it will
not be possible to satisfy player 1’s war expectations in thefirst period and war is inevitable.

The problem is manifested only for thedecliningplayer 1. To see this note that therising player 2 would
prefer peace ifu2.x1/ C u2.x�

2 / � Ow2, which means that she would agree to anyx1 � 2 Op C c2 � x�

2 .
This is minimized atx�

2 D p C c2, where it reduces tox1 � 2 Op � p. But since2 Op � p > 0, it follows
that there are always feasible demands that player 2 would agree to. In other words, the problem is that
the declining player cannot be compensated enough to acceptpeace given the disadvantages he expects in
the future because of the power shift.

The first insight of the model is that a sufficiently large power shift can lead to a bargaining breakdown
(causing war) in the dynamic game. This is so even though if wewere to consider each period separately
no fighting would occur. The breakdown happens because the two periods are linked strategically with
player 1 having the option to impose an expected war outcome for both periods before the power shift
occurs. This linkage by itself is not enough if the power shift is not very large. We saw this in the static
environment (the sufficiency condition cannot be satisfied if Op D p). More to the point, however, the size
of the power shift matters greatly, as the sufficiency condition shows.

Having even a large power shift is, by itself, not enough to trigger the problem. To see this, what feasible
demand player 1 could have that would be satisfactory in the first period. LetOx2 denote the deal he expects
in the second period. Then he would agree to anyx1 � 2 Op � c1 � Ox2. Such deals will exist whenever
2 Op � c1 � Ox2 � 1, or wheneverOx2 � 2 Op � c1 � 1. The problem is that player 2 cannot credibly promise
to make any such offers when the sufficiency condition holds.To see this, recall that the most she would
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concede in the second period isp C c2. Thus, if2 Op � c1 � 1 > p C c2, player 1’s expectations cannot be
met even with the largest concession that she would be willing to make. But this is merely a restatement
of the sufficiency condition, so if it is satisfied player 1 cannot be bought off.

This reveals the fundamental problem caused by the power shift. The reason the declining player cannot
be compensated for the expected power shift has to do with what the rising player can credibly agree to
after the power shift occurs. The key to the bargaining breakdown is player 1’s very bad expected peaceful
outcome from bargaining in the second period. If player 2 could credibly promise a better deal in that
period, then war could be avoided. In particular, if she could credibly commit to offering a 2nd-period deal
that would be worse than her expected war payoff in the secondperiod, then it would be possible to satisfy
player 1 in the first period. But player 1 knows that when the second period arrives player 2 will have no
incentive to abide by that promise: she would be better off rejecting any such deals and fighting. Therefore,
the most she can credibly commit to is to relinquish everything over her war payoff,x�

2 D 1 � w2. But
since the power shift is expected to improve her war payoff substantially, this concession turns out to be
too small for player 1 to deter him from fighting on better terms.

This inability of the rising player to credibly promise sufficient future compensation to the declining
player is why the bargaining breakdown caused by a large power shift is called thecredible commitment
problem.25

5 Critiques of Subgame Perfection

Although backward induction and subgame perfection give compelling arguments for reasonable play
in simple two-stage games of perfect information, things get uglier once we consider games with many
players or games where each player moves several times.

First, consider a game withn players that has the structure depicted in Fig. 21 (p. 42). Since this is a
game of perfect information, we can apply the backward induction algorithm. The unique equilibrium is
the profile where each player choosesC and in the outcome each player gets 2.

S

1; : : : ; 1

1 C

S

1=2; : : : ; 1=2

2 C

S

1=n�1; : : : ; 1=n�1

n � 1 C

S

1=n; : : : ; 1=n

n C

2; : : : ; 2

Figure 21: A Game with Many Players.

People have argued that this is unreasonable because in order to get the payoff of 2, alln � 1 players
must chooseC . If the probability that any player choosesC is p < 1, independent of the others, then the
probability that alln � 1 will chooseC is pn�1, which can be quite small ifn is large even ifp itself is
very close to 1. For example, withp D :999 andn D 1001, this probability is.:999/1000 � :37, and with
n D 10; 001, it is barely:00005. Moreover, player 1 has to worry that player 2 might have these concerns
and might chooseS in order to safeguard either against possible “mistakes” byother players in the future
or the possibility that player 3, having these same concerns, might intentionally playS .

25In my formal models in IR class, you will see a more general statement of this result, which also adds the important nuance
that the power shift must not only be large but also sufficiently rapid (in the sense that players cannot negotiate interimagreements
while it is taking place).
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In order for the equilibrium to work, not only must players not make mistakes, but they also must know
that everyone else knows the payoffs, and knows that everyone else knows the payoffs, and knows that
everyone else knows that everyone else knows the payoffs, and so on and so forth. This is thecommon
knowledgeassumption that we’ve seen before. In game theory it is usually assumed that payoffs are
common knowledge and so we can use arbitrarily long chains inour solutions. However, some people feel
that the longer these chains, the less compelling the solution that requires them.

Another critique is that subgame perfection requires that players agree on the play in a subgame even
when backward induction cannot predict the play.
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Figure 22: The Coordination Problem Game.

The coordination game between player 1 and 3 has three Nash equilibria: two in pure strategies with
payoffs.7; 10; 7/, and one in mixed strategies with payoffs.3:5; 5; 3:5/.26 If we specify an equilibrium in
which player 1 and 3 successfully coordinate, then player 2 will chooseR, and so player 1 will chooseR
as well, expecting a payoff of 7. If we specify the MSNE, then player 2 will chooseL becauseR yields
an expected payoff of 5 (coordination will fail half of the time). Again player 1 will chooseR expecting a
payoff of 8. Thus, in all SPE of this game player 1 choosesR.

Suppose, however, player 1 did not see a way to coordinate in the third stage, and hence expected a
payoff of 3:5 conditional on this stage being reached, but feared that player 2 would believe that the play
in the third stage would result in coordination on an efficient equilibrium. (This is not unreasonable since
the two pure strategy Nash equilibria there are the efficientones.) If player 2 had such expectations, then
she would chooseR, which means that player 1 would goL at the initial node!

The problem with SPE is thatall players must expect the same Nash equilibria in all subgames. So,
while this was not a big problem for subgames with unique Nashequilibria, the critique has significant
bite in cases like the one just shown. Is such a common expectation reasonable? Who knows? (It depends
on the reason the equilibrium arises in the first place, whichis not something we can say a whole lot about
yet.)

Yet another critique has to do with games where the same player has to move many times. It seems to
me that this is a more serious problem. Consider the game depicted in Fig. 23 (p. 44).

The backward-induction solution is that players chooseS at every information set. However, suppose
that contrary to expectations player 1 choosesC at the initial node. What should player 2 do? The
backward-induction solution says to playS , because player 1 will playS given a chance. However, player

26In this MSNE, each player choosesA with probability 1=2, as you should readily see.
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Figure 23: The Centipede Game.

1 should have playedS at the initial node but did not. Since player 2’s optimal behavior depends on her
beliefs about player 1’s behavior in the future, how does sheform these beliefs following a 0-probability
event? For example, if she believes that player 1 will stop with probability less than2=3, then she should
play C because doing so will get her at least 3, which is the best she obtains from stopping.

How does player 2 form these beliefs and what beliefs are reasonable? There are two ways to address
this problem. First, we may introduce some payoff uncertainty and interpret deviations from expected play
by the payoffs differing from those originally thought to bemost likely. Instead of conditioning beliefs on
probability-0 events, this approach conditions them payoffs that are most likely given the “deviation”.

Second, we may interpret the extensive form game as implicitly including the possibility that players
sometimes make small “mistakes” or “trembles” whenever they act. If the probabilities of “trembles” are
independent across different information sets, then no matter how often past play has failed to conform to
the predictions of backward induction, a player is still justified in continuing to use backward induction
for the rest of the game. There is a “trembling-hand perfect”equilibrium due to Selten that formalizes this
idea. (This is a defense of backward induction.)

The question now becomes one of choosing between two possible interpretations of deviations. In
Fig. 23 (p. 44), if player 2 observesC , will she interpret this as a small “mistake” by player 1 or asa
signal that player 1 will chooseC if given a chance? Who knows? I am more inclined toward the latter
interpretation but your mileage may vary. To see why it may make sense to treat deviations as a signal,
suppose we extend the centipede game to 40 periods and now suppose we find ourselves in period 20;
that is, both players have playedC 10 times. Is it reasonable to suppose these were all mistakes? Or
that perhaps players are trying to get closer to the endgame where they would get better payoffs? In
experimental settings, players usually do continue for a while although they do tend to stop well short
of the end. One way we can think about this is that the game is not actually capturing everything about
the players. In particular, in experiments a player may doubt the rationality of the opponent (so he may
expect her to continue) or he may believe she doubts his own rationality (so she expects him to continue,
which in turn makes him expect her to continue as well). At anyrate, small doubts like this may move the
play beyond the game-stopping first choice by player 1. This does not mean that backward induction is
“wrong.” What it does mean is that the full information common knowledge assumptions behind it may
not be captured in experiments where real people play the Centipede Game. My reaction to this is not
to abandon backward induction but to modify the model and ask: what will happen if players with small
doubts about each other’s rationality play the Centipede Game? This is a topic for another discussion,
though.
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